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1 Motivation

1.1 Introduction

The most important and the best observable objects in the Universe are stars. A lot of them
can be admired in the night sky with the naked eye, which has been performed for millennia.
Over the centuries, there have consistently been milestones for astronomy, be it in scientific
understanding or in practical implementation. Even today we have not reached the end of
possibilities and there continually arise new exciting questions, which need to be answered by
better and better technology.

Thus there are numerous powerful telescopes on the Earth today, which demand and ad-
vance international cooperation. As a result of the expansive new knowledge generated, there
are more specialized and new astronomical fields of research and the progress in some areas is
enormously accelerated. Theoretical considerations, which are performed by more and more
powerful processors, can actually be verified by improved telescope technique. And relations
and intersections between the subareas are found consistently, since all explored objects and
phenomena are located in one, our, Universe.

One of these fields of research deals with the life and death of stars. To understand how,
when and why the life of a star ends, one firstly has to understand how this life has appeared.
This is explored in the first steps with theoretical considerations and numerical calculations.
Afterwards observational data is used to try to support the ideas that have been developed.
This approach retrieves in this paper. First of all, some paragraphs about the things that are
already known and on which one can build further considerations.

By now it is known that massive stars, stars with more than about ten solar masses are
extremely important for the evolution, structure and appearance of the Universe. They reli-
ably provide energy during their time on the main sequence in the form of winds and ionizing
radiation. This can lead to, for example, creation of new star formation areas due to heating
of the interstellar medium. An even bigger energy supply is created at the end of a massive
star’s life by a supernova. In a supernova, in one second an energy is released which is equiva-
lent to the energy produced by all stars in the whole Universe in that time. This also releases
all heavy elements generated in the core until then by nucleosythesis. In further reactions,
for example due to neutrinos, even more elements are formed. Without such explosions in
the cosmos, the creation of most of the elements would not be possible. As a result of su-
pernovae, the chemical composition of the Universe evolves towards higher metallicities with
time, which means the enrichment of elements heavier than helium. This development would
never have happened without massive stars. This means, we would not have had the genesis
of carbon and water based creatures, like us humans.
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The exact evolution of massive stars is still very unsure. In particular, the stars of the early
Universe with very low metallicity still ask riddles, especially because the possibilities of proof
in terms of direct observations are very difficult. On the one hand, such stars possess a very
high redshift, which is equivalent to a large distance to Earth. On the other hand, most
of these stars already have disappeared by supernovae or other stellar remnants and cannot
be observed anymore. So these objects are even more interesting and important, since they
give indication about the evolution of the Universe itself and the further development of new
stars and all the other objects like star clusters, galaxies and the structure of the interstellar
medium.

We want to obtain precise knowledge about the chemical constitution of the Universe and
its objects. This is quite easily possible through observations of stars, since, as mentioned
before, most of the elements originate from stellar objects. They therefore provide a good
profile of the abundances of each element. The easiest way to understand that is to consider
the relative abundance of hydrogen and helium, which is about 75% and 25% according to
the standard model. Exactly these ratios are found in the interior of stars, which are located
at the main sequence, hence in the phase of hydrogen burning in the core. By the way, this
is the longest phase in the course of the star’s life and thus it is most likely to observe a
star in the main sequence stage. Because of this, the hydrogen burning is best understood.
However, it is not possible to directly observe the interior, where the nucleosynthesis takes
place. Therefore, usually spectroscopic measurements of the stellar surface are performed and
the products of nuclear fusion due to physical, chemical and thermodynamic considerations
are calculated. [Burbidge et al. (1957)], [Kippenhahn, Weigert (1991)]

The elements at the star’s surface normally have no direct time relation to the processes
in the stellar interior, which means that they do not reflect recent processes in the core. The
elements, which have been created in the interior of the star, are transported to the surface,
for instance by convection streams, over the period of a lifetime of a star, hence several mil-
lions of years. Hence, by spectroscopy of the star’s surface one is only able to reconstruct what
happened in the stellar interior millions of years ago. This is different if the star is rotating
around its own axis with a certain velocity. It is assumed, that from a certain velocity on the
rotational effect is strong enough to change the evolution of the star significantly, so that all
elements created in the core become visible at the surface very quickly.
This effect, which is very important for this thesis, is further explained in chapter 1.3. At
first, it is important to understand the nucleosynthesis in the interior of a massive star.
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1.2 Nucleosynthesis in massive main sequence stars

Nucleosynthesis means nuclear reactions in which new atomic nuclei are created from already
existing ones. Out of one element a new one is created and additionally a certain amount of
energy is released or absorbed to preserve energy conservation. The easiest example of nucle-
osynthesis is the fusion of hydrogen to helium, which is called hydrogen burning. To provide
a simple description of the process: four hydrogen nuclei, thus four protons, and two electrons
are transformed into a helium nucleus, which consists of two protons and two neutrons.

Since these reactions happen millions of times in the star’s interior, one speaks of a reac-
tion chain. Reaction chains are very temperature dependent, this means that they only take
place in a small area of temperature. In stars with low or intermediate mass the so-called
proton-proton chain (pp-chain) is dominant. For higher stellar masses, the massive stars ex-
amined in this paper, the temperature and pressure in the core is remarkably higher. Thus
another reaction chain occurs, the so-called CNO-cycle, which then dominates the hydrogen
burning in the core. In this chain a helium nucleus is created out of four protons and two elec-
trons as well, but here isotopes of the elements carbon, nitrogen and oxygen act as catalysts.
There are among other reactions:

12C + 1H→ 13N + γ , (1.1)
13C + 1H→ 14N + γ , (1.2)
14N + 1H→ 15O + γ , (1.3)
15N + 1H→ 12C + 4He , (1.4)
15N + 1H→ 16O + γ , (1.5)
16O + 1H→ 17F + γ . (1.6)

13N→ 13C + e+ + νe , (1.7)
15O→ 15N + e+ + νe . (1.8)

The fusion of carbon, nitrogen and oxygen with a hydrogen atom (reaction 1.1-1.6) is called
proton capture and reactions 1.7 and 1.8 are called β+-decay. Reactions 1.1-1.4 group the
CN-cycle, in which the abundance of the stable oxygen isotope 16O is conserved. If oxygen is
involved in the reaction, then it is the CNO-cycle. [Bethe (1939)], [Langer (2009)]

Over time a large amount of carbon and oxygen is transformed into nitrogen until the abun-
dance of the involved isotopes, except 1H and 4He, remains stable for a long time. There is
a state in which the carbon, nitrogen and oxygen isotopes recreate each other by the further
reactions shown above. The number of carbon, nitrogen and oxygen isotopes is conserved in
this state and it is called equilibrium.
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The distribution of the number of isotopes in the stellar interior changes from the presumed
initial values

12C : 14N : 16O 1 : 0.3 : 3 (1.9)

to approximately
12C : 14N : 16O 1 : 50− 100 : 1− 5 (1.10)

for the resulting equilibrium. [Heger, Langer (2000)]

The processes of the CN-cycle can also be rephrased mathematically, which is shown in
the following. The time of when the reaction chain begins is considered, therefore the number
distribution of equation 1.9 can be used. Furthermore, it is assumed, that initially only carbon
is present, out of which nitrogen is created by proton capture. Out of six carbon protons and
one hydrogen proton seven nitrogen protons are created by nucleosynthesis. So the decrease
of carbon atoms dC is directly related to the increase of nitrogen atoms dN and dC can be
expressed by dN . Therefore one nitrogen atom is equivalent to 6

7 carbon atoms and is noted
as

dC = −6

7
dN . (1.11)

As long as there are already oxygen atoms, their fraction stays constant in the star’s interior.
The change of isotopes can be expressed as the following:

dO = 0 . (1.12)

To compare the ratios of abundance, they are graphed and, out of the considerations above,
an expectation value of the slope in the initial area can be determined. This means that these
theoretical considerations are only valid at the beginning of the CN-cycle. As soon as the
chain develops towards equilibrium, other assumptions have to be made.
The change of the fractions N

C and N
O are examined.
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Applying the assumption of the number distribution from equation 1.9, the following value
results for the expected slope:

d

(
N

C

)
d

(
N

O

) = 3.92 . (1.17)

[Przybilla et al. (2010)]
These theoretical considerations are also tested in this thesis, see chapter 4.1.3.

The CNO-cycle is also a very important instrument to examine the fusion reactions in stars.
Furthermore, it is the most important source of energy in massive stars of the main sequence
to keep the balance between gravitational and radiation pressure in the star. Lighter elements
than carbon, which can be present in stars as well, also participate in nuclear reactions, but
they are not able to fulfill the task of energy supply. These reactions occur in much shorter
time scales and no cycles reproduce these elements. Light elements such as lithium, beryl-
lium and boron are quickly burnt in the core and through their disappearance a long-term
energy production cannot be ensured. Light elements can only be found in the outer layers,
hence the envelope of the star, since the temperatures are too low for nuclear reactions there.
Considering heavier elements than nitrogen, it can be seen that they have too slow reaction
times to work against the gravitational pressure from outside. [Bethe (1939)]

There are further reaction chains, which occur during hydrogen burning in the core. They
consist of reactions of neon and sodium as well as magnesium and aluminium. Thereby a
similar buildup and reduction of the reaction partners as in the CNO-cycle happens. In the
NeNa-cycle the number of the neon isotopes 21Ne and 22Ne is reduced by the creation of the
sodium isotope 23Na. The abundance of the isotope 20Ne stays the same. In the MgAl-cycle
the long-lasting radioactive isotope 26Al is created by the isotope 25Mg with proton capture.
The aluminium isotope decays to 26Mg through electron capture after short time. Through
another proton capture the aluminium isotope 27Al can be created by 26Mg. In these reac-
tions 24Mg remains unaffected. [Heger, Langer (2000)]
Moreover, it is possible that the NeNa- and MgAl-cycles interact with each other. Thus 24Mg
can be created by 23Na with proton capture.
Furthermore, the fluorine isotope 19F is involved in the CNO-cycle by reactions with oxygen.
It can be produced by proton capture with 18O, but it preferentially is transformed to 16O
by another proton capture. The fluorine isotope therefore disappears quickly from the stellar
interior due to nuclear reactions in the temperature area in which the CNO-cycle and the
NeNa- and MgAl-cycles preferably take place and it is being “destroyed”. [Langer (2009)]
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An important area in the context of nucleosynthesis in massive stars is the behaviour in de-
pendence of the metal content. The metallicity Z of a star has two possible definitions.

For observations of stars, it is defined by the ratio of iron to hydrogen with the assump-
tion that the elements have enriched equally in the star. Thus the fraction of the measured
abundances N normalised to the sun is stated:

Z = lg

(
NFe

NH

)
− lg

(
NFe

NH

)
�

, (1.18)

with lg

(
NFe

NH

)
�
≈ lg

(
1

31000

)
≈ −4.49 . (1.19)

[Frebel (2008)]

For theoretical model calculations, the metallicity is defined by the sum of all elements heavier
than helium. The abundance of hydrogen X, of helium Y and metals Z are described as mass
fractions. The sum of those results in the inverse mean molecular weight µ of the star:

1

µ
= 2X +

3

4
Y +

1

2
Z . (1.20)

The mean molecular weight of an isotope is the fraction of the number of nucleons, hence
protons and neutrons, to the number of electrons and nuclei. If there is a mixture of isotopes,
the total mean molecular weight of a star is calculated by equation 1.20. [Pols (2009)]

In metal poor stars, the abundance of carbon or heavier elements is very low. The CNO-cycle
would be not efficient enough at a certain temperature, which means that it would not produce
enough energy to establish energy balance in the star. Thereby stars with low metallicity are
much denser and hotter in the core to maintain a high enough energy rate. Moreover, stellar
winds, resulting in mass loss of the outer layers of a massive star, are created less strongly by
the low abundance of carbon, nitrogen and oxygen. The mass loss has a proportional relation
to the metallicity of a star. [de Mink (2010)] We will examine this notion in greater detail
later.
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1.3 Effects of rotation of massive main sequence stars

In this section resultant effects from the rotation of a massive star, are described and ex-
plained.
In the rotation of a star, the resulting centrifugal forces, which predominantly act on the
outer layers of the star, cause an overall increase of the stellar surface area. With very strong
forces, the star can deform so heavily that the radius at the equator increases strongly com-
pared to the one at the poles. In general, this deforming effect is negligibly small and it can
be considered that the stellar radius increases symmetrically. Since a weaker gravitational
force acts from the outside, the pressure, and therefore the temperature, in the stellar interior
decreases. As a consequence, the given fuel in the core is burnt with a lower rate, such that
all nuclear fusion processes proceed slower. Subsequently less radiation intensity is produced
and the luminosity of the star at the beginning of the main sequence is smaller. Due to that,
the effective temperature, that is the surface temperature, can also be lower. One minor effect
is that a star with a certain rotational velocity has a longer life and, therefore, stays longer
on the main sequence than a comparable star without rotation. However, the effects on the
luminosity and effective temperature reverse after a short time and they reach much higher
values for most of their time on the main sequence than a comparable not rotating star. The
causes are further explained in the following.
A rotating star firstly shows a completely different behaviour in a luminosity-effective tem-
perature plot, hence a Hertzsprung-Russel diagram, than a not rotating star. This is further
explained in the following figure 1.1. [de Mink (2010)],[Heger, Langer (2000)]

The most important effect of rotation, which is the matter of this thesis, is the mixing. Mixing
refers to the transport of material between the layers of the star, whereby elements can also
cycle from the envelope up into the core. The mixing effect can be caused by Eddington-
Sweet circulations or shear mixing. In the first effect, due to thermal instabilities between
the pole and equator areas of the star, meridional material streams occur, which can range
over a large area in the star. In the second effect, balancing streams, which carry material,
occur between two layers that rotate with different angular velocities. If this happens with
many layers spread all over the star, the star is completely mixed.

The mixing also results in effects within the star and on its evolution. Hence, the exchange
of material between the envelope and the core is the main cause for the increase of the hy-
drogen burning duration, because unburnt hydrogen can reach from the envelope to the core
and provide new fuel. Due to the mixing, elements become visible at the surface, which
otherwise stayed in the core forever, or elements from the envelope are transported to the
core where they might participate in nuclear reactions and thereby disappear. This regards
light elements, which are only found left in the envelope, as described in section 1.2. Thereby
through efficient mixing the chemical structure of a star changes thoroughly. [de Mink (2010)]
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The rotational velocity of a star is described by the velocity at the stellar equator. The initial
velocity vinit is given as the specific fraction of the Kepler velocity vKepler and is called the
initial rotation rate:

fK =
vinit

vKepler
. (1.21)

vinit can be determined by observations, which is not further explained here. For further
explanation see [Heger, Langer (2000)]. The Kepler velocity can be calculated out of the
specific stellar parameters, the gravitational constant G, the initial stellar mass M and its
radius R as the following:

vKepler =

√
GM

R
. (1.22)

The higher the rotation rate, the stronger the effects explained above are visible. Also present
is a critical velocity vcrit which is defined by the Eddington factor Γ. This factor consists of
the opacity κ and the luminosity L of the star. Furthermore Γ scales with the speed of light
c, the gravitational constant G and the initial stellar mass M :

vcrit =

√
GM

R
(1− Γ) with Γ =

κL

4πcGM
. (1.23)

[Yoon, Langer (2005)]

In this context, we come back to the effect of mass loss. This phenomenon predominantly oc-
curs in very massive stars and is very important for the understanding of element abundances,
but until now is not well understood. As soon as a star has lost most of its hydrogen-rich
envelope it is considered a Wolf-Rayet star. The surface abundance of hydrogen then de-
creased to a mass fraction of 40% at most. It is assumed that a Wolf-Rayet star has lost its
envelope almost completely due to strong winds leaving the naked core, where the nucleosyn-
thesis is happening, visible. Moreover, high abundances of nitrogen, carbon and oxygen are
observed. As explained in section 1.2, the mass loss behaves proportionally to the metallicity.
Furthermore, the loss rate intensifies with increasing rotational velocity of the star, because
the outer layers of a very fast rotating star are only bound weakly to the gravitation of the
star. The relation to Wolf-Rayet stars will be important in the further analysis. [Pols (2009)],
[Yoon, Langer (2005)]
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1.4 Quasi-chemically homogeneous evolution

The effects of a fast rotating star, described in the last section, result in a new chemical
structure and evolution of the star. Due to the rotationally induced mixing there is no, or
only a very small, chemical gradient between envelope and core. For example, during hydro-
gen burning in the stellar interior, the produced helium is mixed through the star due to the
rotation. That means there is a very small difference of the element abundances between two
layers in the star. Ideally, the star now has the same number density of the existing elements
in each place and therefore has a chemically homogeneous structure. This also means that the
star, which at the beginning of the main sequence mainly consists of hydrogen, is transformed
into a star with a constistent amount of helium at the end of the main sequence. In reality,
the star usually still has a very thin hydrogen envelope. [Yoon, Langer (2005)]

With the assumption of a chemically homogeneous structure of the star one can use the
general relation L ∝ µαMβ, [Kippenhahn, Weigert (1991)], with which one can see, that
with increasing mean molecular weight µ of the star the luminosity L increases with constant
stellar mass M . The powers α and β differ depending on the stellar mass and structure,
but here only the understanding of the proportionality of L and µ matter. With increasing
atomic mass also the mean molecular weight increases, for example from ionised hydrogen
with µ = 1

2 to helium with µ = 4
3 , compare equation 1.20. If a rotating star on the main

sequence is enriched with more helium than a star with the same mass without rotation, then
the total mean molecular weight of the rotating star is greater and thus its luminosity as well.
The effect, that the luminosity of a rotating star evolves only after some time on the main
sequence to higher values, can be explained by the duration until an effective mixing in the
star is reached.

To distinguish rotationally induced mixing from other mixing processes, we consider the
example of a convective mixing process. In the interior of a massive star, there is a con-
vective core, which is surrounded by a radiative envelope. In the convective core, there are
so-called convective streams, which are understood as transport in terms of material bubbles
with different densities. If there are material streams which overshoot the core, one speaks
of “convective core overshooting”. [Pols (2009)] Thereby the boundary layers between the
convective core and the radiative envelope are mixed, so that similar effects occur in the star
as by rotationally induced mixing, as can also be seen in the Hertzsprung-Russel diagram. So,
the convective core, for example, is being enlarged in both cases, whereby the star’s luminos-
ity increases. However, the “convective core overshooting” can never mix that large-scaled as
the rotationally induced mixing. Hence, the changes of the star’s chemical structure, which
become visible at the surface, can be best explained by the theory of the rotationally induced
quasi-chemically homogeneous evolution.
The term “quasi-chemically homogeneous” means, that a rotating star is mixed so far, that
this can be approximated by a chemically homogeneous structure, but the ideal case of a
completely homogeneous star is never reached. [Heger, Langer (2000)]
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Now we will further consider the behaviour in the Hertzsprung-Russel diagram (HRD). For
this we use figure 1.1, which has been generated with the help of the program Gnuplot out of
data from [Yoon et al. (2006)], which is available for the whole thesis, as will be explained in
chapter 2. The figure shows different evolutionary tracks of a star with a mass of 12M� and
a metallicity of Z = 0.004 with different rotational velocities from 0.1 to 0.7 vKepler shown as
luminosity log (L/L�) against effective temperature log Teff. The metallicity is equal to the
metallicity of the stars in the Small Magellanic Cloud, which is abbreviated as “SMC” in the
following. It has to be noted, that here one sees the total stellar evolution from hydrogen
core burning to the exhaustion of the last fuel.

Figure 1.1: Example of a HRD with tracks of homogeneous evolution (continuous line)
and non-homogeneous evolution (dashed lines), as well as partially homogeneous evolution
(dashed-dotted line), for models with a mass of 12M�, metallicity of Z = 0.004 and different
rotational velocities, see legend.

On examination of the main sequence, it can be seen that the curve with the continuous line
(fK = 0.7) proceeds from the bottom right to the top left, thus towards higher luminosity
and effective temperature. The phase of the main sequence ends at an effective tempera-
ture of about 11 and a luminosity of approximately 5.1. The curve with the higher rotation
rate, therefore, describes a chemically homogeneous evolution. Whereas the curve with the
dashed lines proceeds from the bottom left to the top right, thereby showing a lower effec-
tive temperature with increasing luminosity. Here the hydrogen burning ends at an effective
temperature of about 10 and a luminosity of 4.3 and 4.4. Therefore, the stars with low rota-
tional rates evolve non-homogeneously. In addition, one identifies that there can be a mixed
state, which is visible here at a rotational rate of 0.6. The star firstly evolves on the homo-
geneous track towards high temperatures, until, suddenly, a change to lower temperatures to
the non-homogeneous area is visible. The main sequence ends at an effective temperature of
about 10.2 and a luminosity of 4.6. This type of evolution is marked with dashed-dotted lines.



1 Motivation 11

The different developing confirms that the evolutionary tracks of chemically homogeneous
evolution and non-homogeneously evolving stars on the main sequence in theoretical models
can be clearly distinguished. Furthermore, it can be seen, in comparison with other HR di-
agrams of different mass and rotational rates, that with higher stellar mass a lower rotation
rate is necessary to mix the star thoroughly. [Heger, Langer (2000)], [Yoon, Langer (2005)]

It is not possible to map the evolutionary tracks of a star through observations, since the
duration of the main sequence is far too long. In HR diagrams out of observational data,
many different stars in different evolution stages with different luminosities and tempera-
tures, as well as masses and metallicities, are found. The observed stars with homogeneous
and non-homogeneous evolution overlap on the main sequence. This means that, in the ob-
servation of a star cluster or a section of the Milky Way, one is not able to perform a clear
separation of the recorded stars in homogeneous and non-homogeneous evolution.
For better understanding to this figure 1.1 has been prepared. In figure 1.2 the evolutionary
tracks of different stellar models are shown.

Figure 1.2: To the distinction of the evolutionary tracks of different stellar models with the
masses 12, 16, 20 and 30M� and the SMC-metallicity for different rotation rates. The black
solid lines represent fast rotation and the red dashed lines slow or no rotation. The overlap
of the black and red lines on the main sequence makes clear, that in a HRD of observational
data no distinction between homogeneous and non-homogeneous evolution is possible.
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Since the evolutionary tracks of different stars now overlap on the main sequence, one cannot
distinguish a well-defined separation between the rotation rates. To be able to identify and
research chemically homogeneously evolving stars by direct observations, one needs a proper
method of distinction. The method should provide clear and well-defined results, so that they
can be easily used in observations. Thus, it is aspired to work out a distinction method, which
is characterised by only one stellar parameter. In this thesis, a method is developed which is
given by the stellar parameter of the element abundances at the star’s surface.

1.5 Aim of this thesis

The aim of this thesis is, by the analysis of the element abundances at the stellar surface,
to detect changes of the surface abundances of the elements with regard to the rotationally
induced mixing during the main sequence. From that, a method will be worked out, which
is able to distinguish homogeneously and non-homogeneously evolving stars, so that a direct
and clear recognition of rotationally induced chemical homogeneity in massive main sequence
stars is possible. Through observation of the element abundances at the surface, a star shall
be identified clearly as chemically homogeneous opening possibilities for further research.
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2 Used model calculations

In order to work on the questions mentioned above, data of numerical model calculations of
different stellar models is used. The data originates [Yoon et al. (2006)] and is computed by
a hydrodynamical stellar evolution code. In this the effects of rotation, transport of angular
momentum, magnetic torques and hydrodynamical instabilities are considered as influences
on the star’s structure. In this thesis, the effects of rotation are most important. Stars with
different metallicities between Z = 0.004 and Z = 10−5 are examined. The range of the initial
stellar mass is 12 to 60M� and the calculations are done with rotational rates between 0.0
and 0.8.
The numerical calculations result in simulated data of the important stellar parameters: iso-
tope abundances at the surface, time or age of the star, effective temperature, luminosity,
mass, temperature in the stellar interior and many additional parameters secondary to this
thesis.
The analysed abundances at the stellar surface involve the following isotopes:

Hydrogen 1H 2H
Helium 3He 4He
Lithium 6Li 7Li
Beryllium 7Be 9Be
Boron 8B 10B 11B
Carbon 11C 12C 13C
Nitrogen 12N 14N 15N
Oxygen 16O 17O 18O
Fluorine 19F
Neon 20Ne 21Ne 22Ne
Sodium 23Na
Magnesium 24Mg 25Mg 26Mg
Aluminium 26Al 27Al
Silicon 28Si 29Si 30Si
Iron 56Fe

The used work deals with finding out how gamma-ray bursts (GRBs) at the end of a star’s
life develop. This means, finding the cause of these highly energetic bursts of electromagnetic
radiation. It is assumed that the predecessor stars of GRBs are related to the quasi-chemically
homogeneous evolution. The bigger part of GRBs is predicted for the range of mass studied in
this thesis and metallicities below Z = 0.004. Above this metallicity limit, a star’s life usually
ends by a supernova. As mentioned before, the metallicity Z = 0.004 equals the metal content
in the Small Magellanic Cloud, as such, the results of this work can be compared with real
objects out of observations.
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3 Method of the analysis of the abundances

3.1 General approach

The data from the model calculations are analysed and handled graphically with the help
of the program Gnuplot. Plots for element abundance at the stellar surface were graphed
against time. We created plots for each stellar mass and metallicity per element with differ-
ent rotation rates. The results are completely quoted in appendix A.1.

Firstly, it is essential to order the given star’s data with different masses and rotation rates,
which means to determine the difference between homogeneous and non-homogeneous evo-
lution. For this, as described in section 1.3, a Hertzsprung-Russel diagram was created by
graphing the different evolutionary tracks of a star with different rotational rates. If the
evolutionary track equals the dashed lines of figure 1.1, it is a non-homogeneous evolution,
but if it equals the dashed-dotted line, the star runs through a partially homogeneous evolu-
tion. If the developing proceeds as the solid line in fig. 1.1, the star evolves quasi-chemically
homogeneous. The following curves in the figures are shown by this definition. The exact
classifications of the evolutionary tracks are quoted in appendix A.2. The HRDs can be seen
in figures A.1 to A.19 in appendix A.1.

Additionally, the existing data sets are adjusted to the needs described in the following.
It is enough to consider the sum of the individual isotopes of each element, since usually one
isotope of an element dominates in abundance and therefore remaining isotopes only create
a very small change. This is practically implemented in the Gnuplot script. Furthermore,
the element abundances shall be shown as fractions of the initial values, which is abbreviated
with “initial”. So each graph starts at the value “1” and it is possible to observe the per-
cental change in progression. The initial abundance value of an element can be determined
by consideration of the “zero-age main sequence”, hence time zero displays the beginning of
a star’s life. It is assumed that the star initially has the same chemical composition as the
interstellar medium from which it originated.

Furthermore, the data is only examined to the end of the main sequence. For this the value
of the central temperature TC is consulted. If it is greater than 108 K, one can act on the
assumption, that hydrogen burning in the core ends and helium burning starts and, therefore,
by definition, the main sequence is finalised in any case. In figure 3.1 the point in time of the
end of the main sequence phase can be estimated, but practically this has been carried out
with a C-program.
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Figure 3.1: Developing of the central temperature with time for stars with M = 12M�,
Z = 0.004 and different rotation rates, compare figure 1.1.

Now let’s come to the actual method, with which homogeneously and non-homogeneously
evolving stars can be distinguished from each other. The results of this analysis will give
the possibility to also be used for observations. Thus, the curves of homogeneous and non-
homogeneous evolution should be as far away from each other, that, also with measurement
errors, they can be clearly separated. In most measurements of observations the uncertainty
is about 0.2 dex. This means that the curves in the abundance-time plot have to be separated
by at least 0.2 dex to provide clear results. These requirements are from now on shortly called
“dex-criterion”.

The so-called dex-value is mainly used in logarithmic plots, since the distance of 0.2 dex,
usually on the y-axis, equals 0.2 scale divisions. The following conversion holds:

∆ log y = 0.2 dex (3.1)

⇔ log y1 − log y2 = 0.2 (3.2)

⇔ y1

y2
= 100.2 ≈ 1.585 . (3.3)

The following figure clarifies how the distances in a diagram with logarithmic and linear
plotted scales have to be read. As an example, a luminosity-effective temperature is used.
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Figure 3.2: Explanation to the term of the dex-value, whereby the left diagram is plotted
with a logarithmic scale and the right diagram with a linear scale.

If the maximal or minimal value of the element abundance of a non-homogeneously evolving
star with rotational velocity a has a distance of not less than 0.2 dex to the curve of the element
abundance of a homogeneously evolving star with rotational velocity b, whereby b>a, a clear
distinction between both evolution types can be made. In figure 3.3 the “dex-criterion” is
clarified with the help of the developing of the surface abundance of oxygen.

Figure 3.3: Example of an abundance-time diagram to explain the “dex-criterion” on the
basis of the abundance change of oxygen at the surface of 40M�-stars with Z = 0.004 and
different rotation rates. As soon as the abundance is below about 0.3-times the initial value,
a 40M�-star can clearly be identified as chemically homogeneous.
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The element, which fulfills the “dex-criterion”, can serve in observations as a distinction char-
acteristic between homogeneous and non-homogeneous evolution of massive main sequence
stars.

3.2 Limiting

In the following, those elements which are not eligible for the demanded distinction of homo-
geneous and non-homogeneous evolution, due to several each specified reasons, are already
excluded.

In all observed plots, it is quickly noticeable that the change in surface abundance of iron
and silicon is negligibly small or nonexistent. This is because only the period of the main
sequence is considered and these elements are created during later evolutionary stages of the
star. Thus, these elements can be excluded directly from further analysis and omitted from
the appendix.

By consideration of the elements lithium, beryllium and boron it is noticed that the non-
homogeneously evolving models do not behave as expected. So at almost all stellar masses
and metallicities the abundance of the three elements at the star’s surface decreases to a lower
value as in the homogeneously evolving models, compare fig. A.44 to A.79. Furthermore, one
observes in all abundance-time diagrams at all evolution tracks that, at the beginning of the
main sequence phase, the content of lithium, beryllium and boron decreases strongly. The
higher the rotational velocity of the star, the more drastically the decrease proceeds. In the
better part of the abundance-time diagrams, after a short-timed increase in abundance, the
developing of most of the evolutionary tracks passes into saturation. In this, one can see
that the higher the rotation rate, the higher the preserved mass fraction of the element. A
particularly distinct example to this can be seen in figure 3.4, in which the progress of the
lithium abundance of a 60M�-star model with Z = 10−5 is visible.
The reasons for this unexpected developing of the abundances of lithium, beryllium and
boron can only be conjectured at this point in time. Possible sources could be temperature
dependent fusion processes in metal-poor stars or effects by mass loss. Further works will be
necessary to understand the behaviour of these elements at low metallicities.
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Figure 3.4: Example of an abundance-time plot of lithium in 60M�-stars with Z = 10−5 and
different rotation rates. It is not possible to thoroughly fathom the visible progression within
the limits of this thesis.

In the further analysis with the help of the “dex-criterion” carbon, nitrogen, neon and mag-
nesium can be clearly removed as well.

By consideration of carbon, the previously explained CNO-cycle becomes important. At
first, the surface abundance of carbon clearly decreases in all evolution types, though it is
stronger in the homogeneous curves. In those, one subsequently observes the state of equilib-
rium already towards the end of the main sequence, so that the abundance increases slightly
after a saturation phase. Owing to this, the minimal values of the abundance curves of the
non-homogeneous evolution and the maximal values of the curves with homogeneous evolution
almost never have the necessary distance of 0.2 dex. Only in one model, namely M = 40M�
and Z = 0.004, the “dex-criterion” is fulfilled, see appendix A.1 fig. A.85. In some cases, the
curves of homogeneous and non-homogeneous evolution intersect. An example of this is visi-
ble in figure 3.5. Therefore, the element carbon is a poor choice for distinguishing chemically
homogeneous evolution.

A similar behaviour shows nitrogen caused by the CNO-cycle. However, the nitrogen abun-
dance of the homogeneous evolution continuously rises up to a saturation value. Here the
“dex-criterion” is only fulfilled in one case. This example can be seen in figure 3.6. This
means, that with the help of the nitrogen abundance at the stellar surface, it cannot be
clearly distinguished between non-homogeneous and homogeneous evolution.

The behaviour of the mass fractions of carbon, nitrogen and oxygen to each other, which
is shortly called CNO-abundances, will be analysed in detail in section 4.1.3.
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Figure 3.5: Example to the element abundance of carbon as a function of time for stars with
M = 20M�, Z = 10−5 and different rotation rates, whereby the curves of homogeneous and
non-homogeneous evolution intersect after about 5 · 106 years.

Figure 3.6: Example to the element abundance of nitrogen as a function of time in stars with
M = 40M�, Z = 0.004 and different rotation rates, whereby the evolutionary tracks with a
rotation rate of 0.2 and 0.3 are just separated by 0.2 dex at about 3.2 · 106 years.
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As can be checked in figures A.132 to A.143 in appendix A.1, the element neon is not eligible
in any case for the recognition of chemically homogeneous stars. In the case of the SMC-
metallicity the abundance of total neon changes too little. In the case of low metallicities, a
similar behaviour to that of carbon can be observed. The necessary “dex-criterion” is never
fulfilled by neon and the element can be excluded as a method of distinction for chemically
homogeneous stars.

The element magnesium behaves similar to neon for the SMC-metallicity and therefore can-
not be used, see appendix A.1 figures A.156 to A.162. For Z = 10−5 one notices up to
stellar models with 40M� a totally different behaviour. An example can be seen in figure 3.7.
After a short decrease in abundance in both homogeneous and non-homogeneous evolution,
the abundance of magnesium increases. In the star models with homogeneous evolution the
abundance increases up to 1.8 times the initial value and decreases quickly from the maximal
value to almost zero. This is unexpected and cannot be explained immediately. The strong
decrease of the magnesium abundance demands detailed consideration. The behaviour of the
magnesium abundance at the surface in very metal-poor stars is particularly interesting, be-
cause a similar depletion of magnesium in metal-poor globular clusters has been observed and
this cannot be explained yet. Thus, magnesium is further examined in section 4.2 regarding
the dependence of the metallicity. However, magnesium does not fulfill the “dex-criterion” at
this metallicity either.

Figure 3.7: Example to the element abundance of magnesium as a function of time in stars
with M = 20M�, Z = 10−5 and different rotation rates.
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In the further analysis, the phenomenon of Wolf-Rayet stars needs special consideration. As
previously explained in section 1.3, a Wolf-Rayet star has probably thrown away its hydrogen
envelope completely and the naked helium core becomes visible. Once the hydrogen abun-
dance at the surface is below a mass fraction of 40%, a homogeneously evolving star cannot
clearly be distinguished from a Wolf-Rayet star. It cannot be identified, if the star has this
element abundance by quasi-chemically homogeneous evolution or by strong mass loss. This
means that an interpretation in the abundance-time diagrams from that point in time on, in
which the hydrogen abundance has fallen below the threshold of 0.4, is not possible anymore.
This threshold is referred to as “Wolf-Rayet threshold” throughout this paper. This also has
consequent effects for the interpretation of the other elements. From the point in time of the
“Wolf-Rayet threshold” on, for example, the mass fractions of helium and carbon, nitrogen
or oxygen could have been caused by a Wolf-Rayet star. The products of the core burning,
which is dominated by the CNO-cycle, can be directly observed at the surface. This means,
that an element is only eligible for a distinction method of chemically homogeneous stars, if
the “dex-criterion” is fulfilled before the point in time of the “Wolf-Rayet threshold”.

To the analysis it should also be noted, that the stellar models with partially homogeneous
evolution are temporarily mixed rotationally induced, meaning they show a changed chemical
structure in comparison to non-homogeneously evolving stars. This means, that partially
homogeneously evolving stars also feature enrichments at the surface in the abundance-time
plot, but weaker than completely homogeneous stars. Out of the analysis in this work it
should be possible to recognise completely homogeneous stars. Thus, only those elements are
declared as eligible, with which partial and complete evolution can be distinguished. There
is a more detailed analysis needed to obtain an exact figure of the behaviour of partially
homogeneous in contrast to homogeneous evolution. This will not be done in this bachelor
thesis.



22 4 Analysis of the abundances

4 Analysis of the abundances

4.1 Classification of the evolutionary type for Z = 0.004

In the following the remaining elements are tested in detail for the metallicity Z = 0.004
with the help of the “dex-criterion” on their eligibility of clear distinction between non-
homogeneous and rotationally induced quasi-chemically homogeneous evolution in the abundance-
time diagram. The considered metallicity is equal to the metal content in the Small Magel-
lanic Cloud, so that the results, as already mentioned, can be directly verified and used in
observations.

4.1.1 Hydrogen

In the analysis of the element hydrogen, its abundance-time diagrams are tested on the “dex-
criterion” and the “Wolf-Rayet threshold” at the same time. Hydrogen is regarded as eligible,
if the “dex-criterion” is fulfilled before the “Wolf-Rayet threshold”. As can be examined in
figures A.20 to A.26 in the appendix A.1, the hydrogen abundance at the star’s surface sinks
in all evolutionary tracks over the phase of the main sequence. In the non-homogeneous stellar
models, the decrease in abundance is very small, because the hydrogen in the envelope is not
participating in nuclear reactions and is mainly preserved. Instead, the slight decrease in the
non-homogeneous models is caused by mass loss. In the homogeneously evolving evolution
tracks the total hydrogen deposit in the star is “burnt” and the abundance decreases until the
end of the main sequence to almost zero. To be eligible as a distinction method, the abun-
dance in the homogeneously evolving star model above the value of 0.4 has to differ clearly
from the non-homogeneously evolving models due to the described relation to Wolf-Rayet
stars. This means, that if the abundance values of hydrogen in both evolution types differ
just below the “Wolf-Rayet threshold”, the star model is not eligible as a distinction method
for chemically homogeneous evolution. Since the threshold of 0.4 is not an exact value, an
uncertainty has to be taken into account for this value as well. In figure 4.1 an example is
visible, in which the “dex-criterion” is just fulfilled between a relative abundance of 0.5 and
0.4. Such cases are called hardly eligible in the following.

It is demonstrated that the “dex-criterion” is fulfilled in the mass range 16M� to 25M�
and 40M�. As a general threshold of abundance for the metallicity Z = 0.004, one can
specify that a star can be identified as chemically homogeneous if the surface abundance of
hydrogen lies between 0.56 and 0.4 times the initial value. Since this is a very small range,
hydrogen cannot be recommended as a distinction method.
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Figure 4.1: Example of an abundance-time diagram of hydrogen for stars with 30M�, Z =
0.004 and different rotation rates, in which the “dex-criterion” is fulfilled below a relative
abundance of 0.5. The “Wolf-Rayet threshold” is at the point of 7 · 106 years.

4.1.2 Helium

For helium, the complementary behaviour of the surface abundance to the one of hydrogen is
noticed, across all evolutionary tracks. During the main sequence phase, hydrogen is trans-
formed into helium, so that a chemically homogeneous star is smoothly enriched with helium
by the depletion of hydrogen and at the end of the main sequence, it approximately consists
completely of helium. When the hydrogen abundance in the homogeneous star models has
declined to almost zero, the helium abundance at the surface has its maximum value. How-
ever, again, the “Wolf-Rayet threshold” must be considered.

Generally, we are dealing with a homogeneous evolution if the abundance at the surface is at
least 1.27 times the initial value. However, if the point in time of the “Wolf-Rayet threshold”
in the abundance-time diagram of hydrogen in the diagram of helium is considered, it results
in an upper limit, see figures 4.1 and4.2. The maximal value, up to which the “dex-criterion”
is fulfilled, is 2.8 times the initial value, as can be checked in figure 4.2. This means, that the
range in which helium can be used as a distinction method, is between a surface abundance
of 1.27 and 2.8 times the initial value. The stellar models with 16M� and 60M� do not fulfill
the “dex-criterion”. The stellar models with 25M� and 30M� are not eligible as a distinction
method due to the “Wolf-Rayet threshold”. The figures A.33 to A.38 referring to helium and
the metallicity Z = 0.004 can be found in the appendix A.1.
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Figure 4.2: Example of an abundance-time diagram of helium for stars with 30M�, Z = 0.004
and different rotation rates, in which the “dex-criterion” is fulfilled from an abundance of 2.8
on. In comparison with fig. 4.1 one sees, that the criterion is fulfilled slightly before the
point in time of the “Wolf-Rayet threshold”, so that in this case helium is hardly eligible as
a recognition feature.

4.1.3 Oxygen

In consideration of the behaviour of the surface abundance of oxygen in the abundance-
time diagrams, one directly notices that the non-homogeneous and homogeneous evolution
tracks show a very different behaviour, compare fig. A.104 to A.115 in appendix A.1. The
oxygen abundance of the non-homogeneously evolving stars decreases slightly. The higher
the rotation rate, the higher the decrease. The models of the homogeneously evolving stars
show a strong decrease of the oxygen abundance until the end of the main sequence. In
those stars the CNO-cycle causes oxygen to transform into other elements, predominantly
nitrogen. The behaviour of partially homogeneously evolving stars can be observed easily in
the diagrams of oxygen. As can be seen in figure 4.3, the partially homogeneous evolution
track firstly proceeds parallel to the homogeneous one until the point of about 9 · 106 years,
after which the surface abundance stays constant. The “dex-criterion” between partially and
completely homogeneous evolution is fulfilled quite early. In testing the distinction between
non-homogeneous and partially homogeneous evolution tracks, the “dex-criterion” would be
already fulfilled after about 6 ·106 years and a surface abundance of circa 0.4 times the initial
value, see fig. 4.3 as an example.
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In general, for oxygen, the “dex-criterion” is fulfilled for all masses and metallicities. Consider-
ing the SMC-metallicity, an abundance threshold of 0.065 times the initial value is obtained,
from which on a completely chemically homogeneous star can be clearly recognised. This
low value is obtained by the stellar model with 12M�, compare fig. A.104, since the par-
tially homogeneous evolution track behaves in a homogeneous manner for a long time and,
therefore, a major part of the oxygen deposit is reduced. If the “dex-criterion” between the
non-homogeneous and partially homogeneous track is tested, a higher value is obtained, from
which on the star can be clearly identified as homogeneous. This is denoted with the dashed
dex-bar in figure 4.3. As a global threshold for all masses of the SMC-metallicity, it results
in 0.2 times the initial value. Below this value, a star can be recognised as chemically homo-
geneous with the help of its oxygen abundance at the surface. The “Wolf-Rayet threshold”
becomes relevant from a surface abundance below 0.04 times the initial value.

Figure 4.3: Example of an abundance-time diagram of oxygen for stars with 16M�, Z =
0.004 and different rotation rates, in which the “dex-criterion” is fulfilled for the curves with
fK = 0.5 and 0.6 from an abundance of 0.2 and from circa 9, 5 · 106 years on (continuous dex-
bar). If one tests the “dex-criterion” between non-homogeneous and partially homogeneous
evolution tracks (fK = 0.4 and 0.5), the dashed dex-bar results at the point of 6 · 106 years.
This means, that the “dex-criterion” is fulfilled at an earlier point in time as in the testing
between partially and completely homogeneous evolution tracks.
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Detailed examination of the CNO-abundances

At this point, the mathematical formulation of the CN-cycle, described in section 1.2, is
analysed. Thus, it is concretely tested if the ratios of the surface abundances of carbon,
nitrogen and oxygen behave as expected as equation 1.17 with a slope of about 4. For this a
N
C - N

O plot is created for each stellar model of the metallicity Z = 0.004 of different masses
and rotational rates and a straight line with slope 4 is sketched in, which is denoted in the
diagrams as f(x). The plots are created within the main sequence and consist of the sums of
the isotopes. Since the assumptions made in section 1.2 are only valid at the beginning of the
CN-cycle, only the initial area is considered in the plots depicted here. For the curves of the
homogeneous evolution it is expected that its developing corresponds well to the straight line
f(x). By the rotationally induced homogeneity, the development of the CN-cycle in the core
and the envelope should develop equally. In the following, some diagrams are presented for
clarification. All diagrams of the metallicity Z = 0.004 not shown, are visible in fig. A.116
to A.119 in the appendix A.1.

In the stellar models with 12M� in figure 4.4 it can be seen that the abundances in all
evolution tracks develop only in the area between 0.1 and 0.3 of the mass fraction of nitrogen
and oxygen (NO ) and between 0 and 1 of the fractions of nitrogen and carbon (NC ) with a
slope of about 4. The non-homogeneous evolution tracks ascend with a much higher slope
afterwards, which means that the ratio of the abundances of nitrogen and carbon increase
faster than the abundances of nitrogen and oxygen. In this, the evolutionary tracks with a
higher rotation rate reach a higher nitrogen-carbon abundance fraction.

Figure 4.4: Example to the examination of the CNO-abundances in stars with 12M�, Z =
0.004 and different fK as the ratios N

C against N
O . The function f(x) is a straight line with

slope 4.
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In stellar models with higher masses the range in which the curves in the N
C - N

O plot proceed
with the expected slope becomes larger. The curves of the non-homogeneous evolution show
a shallower developing with higher masses, compare fig. A.116 to A.119. In figure 4.5 an
example of a stellar model with 25M� can be seen, in which the homogeneously evolving
models adapt very well to the straight line f(x), now in the initial area. From about 0.1 to
0.6 of the mass fractions of N

O and from 0 to about 2 of the mass fractions of N
C the homo-

geneous evolution tracks proceed with a slope of 4. With higher mass, the homogeneously
evolving stars consequently correspond better to the theoretical considerations of section 1.2.
Moreover one notes that the homogeneous evolution tracks with low rotation rates from a

Figure 4.5: Example to the examination of the CNO-abundances in stars with 25M�, Z =
0.004 and different fK as the ratios N

C against N
O . The function f(x) is a straight line with

slope 4.

certain abundance ratio always have a smaller slope and those with high rotation rates have
a slope greater than 4. During the proceeding CN-cycle faster rotating homogeneous stars,
therefore, show a higher ratio N

C and N
O . A clear example of this is visible in figure 4.6.

Overall, it can be stated that the chemically homogeneously evolving stars with a low ni-
trogen enrichment at the surface, as expected, behave in the manner of the CN-cycle. The
higher the fractions of N

C and N
O , the higher the deviation from the straight line f(x). This

is mainly caused by the fact that the relative abundance of oxygen stays constant only in a
small span of time. The considerations from section 1.2 and, consequently, the equation 1.17
are not valid for dO 6= 0 anymore.
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Figure 4.6: Example to the examination of the CNO-abundances in stars with 40M�, Z =
0.004 and different fK as the ratios N

C against N
O . The function f(x) is a straight line with

slope 4.

4.1.4 Fluorine

In examination of the element fluorine, clear differences for all masses and metallicities be-
tween the homogeneous and non-homogeneous evolution in the abundance-time plot are dis-
covered, similar to oxygen. For low rotational velocities, the surface abundance decreases
only slightly, whereas for high velocities, existing from an early point in time, an enormous
decrease of fluorine is observed. This can be explained by the reactions with oxygen in the
CNO-cycle, which quickly transform and therefore “destroy” fluorine in a completely mixed
star. In the diagrams, as for example in figure 4.7, it is visible, that the surface abundance of
fluorine decreases down to about 10−6 times the initial value. The higher the rotation rate,
the faster the decrease proceeds. The very low abundance value is very difficult to detect in
observations. Thus, it can be assumed that if there is no fluorine present in a star, complete
mixing has happened and the star can be identified as chemically homogeneous. In non-
homogeneously evolving stars at the surface at low temperatures, at which the CNO-cycle
does not proceed, fluorine is able to sort of “survive”. The consideration of the “Wolf-Rayet
threshold” is not necessary, because at the point in time of the threshold the surface abun-
dance of fluorine mostly already lies below 0.0001 times the initial value, which is comparable
low to 10−6.
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For the SMC-metallicity, the limit for the recognition of the homogeneous evolution, the
abundance value divided by the initial value, results in 0.01. If one examines the stellar
models of the masses 12, 16 and 60M�, as described for oxygen, via the “dex-criterion”
between the partially homogeneous and non-homogeneous evolution tracks, the overall limit
results in 0.1.

Figure 4.7: Example of an abundance-time diagram of fluorine for stars with 40M�, Z = 0.004
and different rotation rates, in which the “dex-criterion” is fulfilled already from an abundance
value of about 0.3 times the initial value on and at the point of 2 · 106 years.

4.1.5 Sodium

The abundance of sodium at the star’s surface behaves differently depending on the metal-
licity of the star, compare fig. A.144 to A.155 in the appendix A.1. A sample examination
of the metallicity dependence is performed for magnesium in section 4.2. In the abundance-
time diagrams of the metallicity Z = 0.004, see an example in figure 4.8, one sees that the
chemically homogeneously evolving stars enrich much more sodium at the surface than non-
homogeneously evolving stars. The non-homogeneous stellar models show an increase of the
surface abundance up to about 2 times the initial value. From early on, especially for the
stellar models with low masses, the enrichment values subsequently do not change for the rest
of the main sequence phase. The higher the rotation rate, the higher the value of enrichment.
The behaviour can be described directly by the NeNa-cycle, in which neon is effectively trans-
formed to sodium.

In the analysis of the sodium abundance at the stellar surface, the difference in the exami-
nation of the “dex-criterion” between partially homogeneous and homogeneous or partially
homogeneous and non-homogeneous evolution tracks stands out. If one wants to obtain a dis-
tinction between partially and completely homogeneous evolution out of the abundance-time
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diagrams, sodium is only eligible for this in the stellar models with 25 and 40M� of the SMC-
metallicity. In the remaining models either the “dex-criterion” itself is not fulfilled or it is
only fulfilled after the “Wolf-Rayet threshold”, because the partially homogeneously evolving
stars behave too similarly to the homogeneously evolving ones. If one regards the differentia-
tion between non-homogeneous and partially homogeneous evolution in the abundance-time
plots, a completely different result yields. In this case all stellar models of the metallicity
Z = 0.004 are eligible for the recognition of partially and completely homogeneously evolving
stars. Moreover there is no interference by the “Wolf-Rayet threshold”.
In figure 4.8 an example is visible, in which the difference between the above described con-
siderations become apparent.

In general, which means also in the special consideration of the partially homogeneous evolu-
tion, it results that sodium serves as a recognition method for chemically homogeneous stars
between surface abundances of about 3 to 4.5 times the initial value. The upper limit occurs
by the “Wolf-Rayet threshold”.

Figure 4.8: Example of an abundance-time diagram of sodium for stars with 20M�, Z =
0.004 and different rotation rates, in which the “dex-criterion” is fulfilled dependening on the
position. In the differentiation between the partially and completely homogeneous evolution
tracks the criterion is fulfilled slightly before the point in time of the “Wolf-Rayet threshold”
of about 1.1 · 107 years at an abundance value of about 4 times the initial value (continuous
dex-bar). In the differentiation between the non-homogeneous and partially homogeneous
tracks the criterion is fulfilled at slightly more than about 2 times the initial value and well
before the point in time of the “Wolf-Rayet threshold”. (dashed dex-bar).
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4.1.6 Aluminium

The developing in the abundance-time plot of aluminium looks similar to the one of sodium.
Aluminium shows the metallicity dependent behaviour as well, which can be viewed in fig-
ures A.175 to A.186 in the appendix A.1. The similar progress to sodium is caused by the
equivalent development of the NeNa- and MgAl-cycles, which are visible at the surface in the
homogeneous evolution. Here magnesium is transformed into aluminium, so that the relative
abundance at the surface of aluminium increases, whereas the one of magnesium decreases.
Furthermore, a similar limited eligibility as a recognition method for completely homogeneous
evolution, as with sodium, results due to the “Wolf-Rayet threshold”. In all abundance-time
diagrams the “dex-criterion” is fulfilled shortly before or after the threshold, compare figure
4.9. For aluminium, it further arises that the “dex-criterion” is not fulfilled in the test be-
tween partially homogeneous and non-homogeneous evolution tracks.

In general, a chemically homogeneously evolving star with the metallicity Z = 0.004 can
be badly recognised with the help of the surface abundance of aluminium, because the ob-
served abundance can also be caused by the exposed core of a Wolf-Rayet star.

Figure 4.9: Example of an abundance-time diagram of aluminium for stars with 40M�, Z =
0.004 and different rotation rates, in which the “dex-criterion” is fulfilled slightly before the
point in time of the “Wolf-Rayet threshold” of about 5 · 106 years from an abundance value
of about 1.9 times the initial value on.
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4.2 Detailed examination of the metallicity dependence

In this section the metallicity-dependent behaviour of the elements neon, sodium, magnesium
and aluminium is further discussed. Generally, one can already note that the different progress
of the surface abundances of neon, sodium and aluminium, especially in homogeneously evolv-
ing stars, is probably caused by temperature differences at different metallicities. The lower
the metallicity, the higher the temperature in the stellar interior where the nucleosynthesis
happens, refer to section 1.2 for an explanation. Therefore, the reactions which lead to the
creation of sodium and aluminium, proceed faster in stars with the metallicity of Z = 10−5

than in ones with Z = 0.004 and reach after a short time in the main sequence phase the
maximal abundance of the elements at the surface, compare fig. A.151 to A.155 and fig.
A.182 to A.186. The abundance of sodium and aluminium reaches the highest values at the
lowest metallicity. After the maximum abundance at the surface in stars with Z = 10−5 drops
in the residue time of the main sequence phase back down to the initial abundance value or
lower. In this period of time, one notices a slight increase of the surface abundance in the
abundance-time plots of neon, which reach lower values in the stellar models with the lowest
metallicities than in those with higher metallicities.

The metallicity-dependent development of the surface abundances of neon, sodium and alu-
minium thus can be explained by the knowledge of the nuclear reactions in stars. The surface
abundance of magnesium presents in the stellar models of the metallicity Z = 10−5 and the
masses 16 to 40M� an unexpected behaviour, which has been described in section 3.2 with
the help of 3.7. Interestingly, the abundance of magnesium decreases strongly after the maxi-
mum, which originates out of the transformation of sodium to magnesium, because the NeNa-
and MgAl-cycles interact with each other. In the stellar models with Z = 10−5 the magne-
sium abundance at the surface also decreases a little at the beginning of the main sequence
phase and increases strongly after about 2 · 106 years and sinks after a short time down to
almost zero. To be able to identify the metallicity at which this behaviour occurs, further
abundance-time diagrams of the metallicity Z = 10−3 are examined. The classification of the
evolutionary tracks in the diagrams shown in appendix A.2 has been created as well as for
the other metallicities with the help of the Hertzsprung-Russel diagrams, which are visible in
fig. A.13 to A.19 in appendix A.1.

In the following the stellar models with two different masses, 20M� and 40M�, the metallic-
ities Z = 0, 004, 10−3 and 10−5 and different rotation rates are compared.
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Figure 4.10: Example to the element abun-
dance of magnesium at the surface as a function
of time in stars with 20M�, Z = 0.004 and
different fK .

Figure 4.11: Example to the element abun-
dance of magnesium at the surface as a function
of time in stars with 20M�, Z = 10−5 and dif-
ferent fK .

Figure 4.12: Example to the element abundance of magnesium at the surface as a function
of time in stars with 20M�, Z = 10−3 and different fK .

In the above figures 4.10 to 4.12 of the stellar models with 20M� one notices that, at the
metallicity Z = 10−3, there is no increase in magnesium abundance at the surface. The
values of which the abundance sinks, are in a similar range as in the abundance-time plots
with Z = 0.004, up to 0.8 times of the initial value for the homogeneously evolving stars.
However, the developing of the curves of the homogeneously evolving stars with Z = 10−3

appears slightly different than the ones in the abundance-time plot with Z = 0.004. At the
end of the main sequence phase, a slight increase of the magnesium abundance arises, similar
to the diagrams of neon of the metallicity Z = 10−5, compare A.139 bis A.143. This behaviour
arises from the stellar models with 16M� and Z = 10−3.
In the following stellar models of the figures 4.13 to 4.15 with 40M�, one sees the same
behaviour in dependence on the metallicity. The minimal abundance in the abundance-time
diagrams with Z = 10−3 is reached earlier with higher mass.
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Figure 4.13: Example to the element abun-
dance of magnesium at the surface as a function
of time in stars with 40M�, Z = 0.004 and
different fK .

Figure 4.14: Example to the element abun-
dance of magnesium at the surface as a function
of time in stars with 40M�, Z = 10−5 and dif-
ferent fK .

Figure 4.15: Example to the element abundance of magnesium at the surface as a function
of time in stars with 40M�, Z = 10−3 and different fK .

The unexpected behaviour of the magnesium abundance at the stellar surface at the metallic-
ity Z = 10−5 thus begins at a metallicity which is lower than Z = 10−3. Further investigations
are necessary to understand the interaction between time and the progression of magnesium
surface abundance in very metal-poor stars.
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5 Results

In this bachelor thesis a detailed analysis of the surface abundances of various elements in
different stellar models with various masses, metallicities and rotation rates in the main se-
quence phase has been performed.
In the process it generally resulted, that the behaviour of the element abundances at the
surface due to rotationally induced homogeneity for the most part can be well explained by
the known nuclear reactions in massive main sequence stars. But, in addition, unexpected
and not directly explainable progressions of the element abundances also occurred. This con-
cerns the elements lithium, beryllium, boron and magnesium. Possible explanations for the
unusual changes in the surface abundances, especially regarding the metallicity dependence
of magnesium are briefly discussed. It is necessary to perform more detailed examinations of
these elements in further papers.

The results show that oxygen and fluorine are the best elements for distinguishing the chem-
ical homogeneity in massive main sequence stars. With the help of the surface abundance
of those elements in all examined stellar models, partially and completely homogeneous evo-
lution can even be distinguished. The “dex-criterion”, described in section 3.1, is fulfilled
by oxygen and fluorine in each stellar model, which means, that the results are applicable
within a measurement error of 0.2 dex, which mainly occurs in observations. A recognition
of chemically homogeneous evolution is possible with the surface abundance of oxygen and
fluorine independent of the stellar mass and metallicity, which is important if one does not
know the mass or metal content of the observed star.
Section 3.2 described the phenomenon of Wolf-Rayet stars, which can limit the eligibility of
an element for the recognition of chemical homogeneity, only needs to be mildly considered
for these elements. The “dex-criterion” is fulfilled at a much earlier point in time than the
point of the “Wolf-Rayet threshold”. This threshold is determined with the help of the point
in time at which the hydrogen abundance at the stellar surface is below a mass fraction of
40%.
The analysis also showed, that for oxygen, a star could be clearly identified as chemically
homogeneous as soon as the surface abundance lies below 0.05 times the initial value. For
fluorine, this is obtained below 0.006 times the initial value. This means, that fluorine, in
principle, disappears in chemically homogeneously evolving stars.
In a more detailed analysis regarding the distinction of partially and completely homoge-
neously evolving stars, see section 4.1.3, slightly different thresholds of the surface abundance
for the recognition of chemical homogeneity with the help of oxygen and fluorine were ob-
tained. The main conclusion, how well both elements are suited for the recognition, is not
changed by this.

The context of partially homogeneously evolving stars behaves differently in the abundance-
time diagrams of sodium and aluminium. In the case of the surface abundance of sodium,
a distinction between partially homogeneous and non-homogeneous evolution with the help
of the “dex-criterion” works better than between homogeneous and partially homogeneous
evolution.
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For aluminium as a recognition feature, it is difficult to make the distinction between homo-
geneous and partially homogeneous evolution and even more difficult to distinguish between
partially homogeneous and non-homogeneous evolution. If the “dex-criterion” is fulfilled, the
point in time lies too close or even beyond the point of the “Wolf-Rayet threshold”.

The eligibility of the elements examined in this thesis for the recognition of chemical homo-
geneity is often limited, as already described, due to the similarity of the surface abundances
of homogeneously evolving to those of Wolf-Rayet stars. Results show that the “Wolf-Rayet
threshold” is of particular concern to the elements hydrogen, helium, sodium and aluminium.

Finally, the analysis of each stellar model shows that the elements carbon, nitrogen, neon
and magnesium cannot be recommended in any case as a recognition method for chemically
homogeneous stars.

6 Summary

In summary one can say, that out of this bachelor thesis the two elements oxygen and fluorine
resulted as the best recognition method for chemical homogeneity, which are eligible for
all masses and metallicities and are therefore well applicable for observations. Moreover,
there have excelled phenomenons, which challenge the further understanding of the theory
of chemically homogeneous evolution. On the one hand, this is the metallicity dependence
of the elements neon, sodium, aluminium and especially magnesium and, on the other hand,
the detailed examination of partially chemically homogeneously evolving stars. Hence it is
now necessary to verify the results of this bachelor thesis by observations and to gain new
knowledge regarding the chemically homogeneous evolution of massive main sequence stars.
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A Appendix

A.1 Figures

Figure A.1: HRD for stellar models with
M = 12M�, Z = 0.004 and different fK .

Figure A.2: HRD for stellar models with
M = 16M�, Z = 0.004 and different fK .

Figure A.3: HRD for stellar models with
M = 20M�, Z = 0.004 and different fK .

Figure A.4: HRD for stellar models with
M = 25M�, Z = 0.004 and different fK .

Figure A.5: HRD for stellar models with
M = 30M�, Z = 0.004 and different fK .

Figure A.6: HRD for stellar models with
M = 40M�, Z = 0.004 and different fK .
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Figure A.7: HRD for stellar models with
M = 60M�, Z = 0.004 and different fK .

Figure A.8: HRD for stellar models with
M = 16M�, Z = 10−5 and different fK .

Figure A.9: HRD for stellar models with
M = 20M�, Z = 10−5 and different fK .

Figure A.10: HRD for stellar models with
M = 25M�, Z = 10−5 and different fK .

Figure A.11: HRD for stellar models with
M = 40M�, Z = 10−5 and different fK .
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Figure A.12: HRD for stellar models with
M = 60M�, Z = 10−5 and different fK .

Figure A.13: HRD for stellar models with
M = 12M�, Z = 10−3 and different fK .

Figure A.14: HRD for stellar models with
M = 16M�, Z = 10−3 and different fK .

Figure A.15: HRD for stellar models with
M = 20M�, Z = 10−3 and different fK .

Figure A.16: HRD for stellar models with
M = 25M�, Z = 10−3 and different fK .
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Figure A.17: HRD for stellar models with
M = 30M�, Z = 10−3 and different fK .

Figure A.18: HRD for stellar models with
M = 40M�, Z = 10−3 and different fK .

Figure A.19: HRD for stellar models with
M = 60M�, Z = 10−3 and different fK .
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Figure A.20: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.21: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.22: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.23: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.24: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.25: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.26: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.27: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.28: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.29: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.30: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.31: Mass fraction divided by the
initial value of hydrogen as a function of time
for stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.32: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.33: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.34: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.35: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.36: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.37: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.38: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.39: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.40: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.41: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.42: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.43: Mass fraction divided by the
initial value of helium as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.44: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.45: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.46: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.47: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.48: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.49: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.50: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.51: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.52: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.53: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.54: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.55: Mass fraction divided by the
initial value of lithium as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.56: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.57: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.58: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.59: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.60: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.61: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.62: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.63: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.64: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.65: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.66: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.67: Mass fraction divided by the
initial value of beryllium as a function of time
for stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.68: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.69: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.70: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.71: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.72: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.73: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.74: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.75: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.76: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.77: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.78: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.79: Mass fraction divided by the
initial value of boron as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.80: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.81: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.82: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.83: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.84: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.85: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.86: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.87: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.88: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.89: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.90: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.91: Mass fraction divided by the
initial value of carbon as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.92: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.93: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.94: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.95: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.96: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.97: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.98: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.99: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.100: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.101: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.102: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.103: Mass fraction divided by the
initial value of nitrogen as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.104: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.105: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.106: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.107: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.108: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.109: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.110: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.111: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.112: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.113: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.114: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.115: Mass fraction divided by the
initial value of oxygen as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.116: Variation of the CNO-
abundance as a function of time for stars with
M = 16M�, Z = 0.004 and
different fK .

Figure A.117: Variation of the CNO-
abundance as a function of time for stars with
M = 20M�, Z = 0.004 and
different fK .

Figure A.118: Variation of the CNO-
abundance as a function of time for stars with
M = 30M�, Z = 0.004 and
different fK .

Figure A.119: Variation of the CNO-
abundance as a function of time for stars with
M = 60M�, Z = 0.004 and
different fK .
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Figure A.120: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.121: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.122: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.123: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.124: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.125: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .



Fluorine A Appendix 59

Figure A.126: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.127: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.128: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.129: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.130: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.131: Mass fraction divided by the
initial value of fluorine as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.132: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.133: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.134: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.135: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.136: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.137: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.138: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.139: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.140: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.141: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.142: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.143: Mass fraction divided by the
initial value of neon as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.144: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.145: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.146: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.147: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.148: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.149: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.150: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.151: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.152: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.153: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.154: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.155: Mass fraction divided by the
initial value of sodium as a function of time for
stars with M = 60M�, Z = 10−5 and
different fK .
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Figure A.156: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.157: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.158: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.159: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.160: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.161: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.162: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.163: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.164: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.165: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.166: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 40M�, Z = 10−5 and
different fK .
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Figure A.167: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 60M�, Z = 10−5 and
different fK .

Figure A.168: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 12M�, Z = 10−3 and
different fK .

Figure A.169: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 16M�, Z = 10−3 and
different fK .

Figure A.170: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 20M�, Z = 10−3 and
different fK .

Figure A.171: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 25M�, Z = 10−3 and
different fK .
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Figure A.172: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 30M�, Z = 10−3 and
different fK .

Figure A.173: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 40M�, Z = 10−3 and
different fK .

Figure A.174: Mass fraction divided by the
initial value of magnesium as a function of time
for stars with M = 60M�, Z = 10−3 and
different fK .
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Figure A.175: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 12M�, Z = 0.004 and
different fK .

Figure A.176: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 16M�, Z = 0.004 and
different fK .

Figure A.177: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 20M�, Z = 0.004 and
different fK .

Figure A.178: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 25M�, Z = 0.004 and
different fK .

Figure A.179: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 30M�, Z = 0.004 and
different fK .

Figure A.180: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 40M�, Z = 0.004 and
different fK .
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Figure A.181: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 60M�, Z = 0.004 and
different fK .

Figure A.182: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 16M�, Z = 10−5 and
different fK .

Figure A.183: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 20M�, Z = 10−5 and
different fK .

Figure A.184: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 25M�, Z = 10−5 and
different fK .

Figure A.185: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 40M�, Z = 10−5 and
different fK .

Figure A.186: Mass fraction divided by the
initial value of aluminium as a function of time
for stars with M = 60M�, Z = 10−5 and
different fK .
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A.2 Data

Mass ‖ fK 0.1 0.2 0.3 0.4

12 M� non-homogeneous non-homogeneous non-homogeneous non-homogeneous

16 M� non-homogeneous non-homogeneous non-homogeneous non-homogeneous

20 M� non-homogeneous non-homogeneous non-homogeneous part. homogeneous

25 M� - non-homogeneous non-homogeneous homogeneous

30 M� - non-homogeneous part. homogeneous homogeneous

40 M� non-homogeneous non-homogeneous homogeneous homogeneous

60 M� non-homogeneous part. homogeneous homogeneous homogeneous

Table A.1: Classification of the evolutionary tracks for Z = 0.004 (Part 1)

Mass ‖ fK 0.5 0.6 0.7 0.8

12 M� non-homogeneous part. homogeneous homogeneous -

16 M� part. homogeneous homogeneous - -

20 M� homogeneous homogeneous - -

25 M� homogeneous homogeneous - -

30 M� homogeneous homogeneous - -

40 M� homogeneous homogeneous - -

60 M� - - - -

Table A.2: Classification of the evolutionary tracks for Z = 0.004 (Part 2)

Mass ‖ fK 0.1 0.2 0.25 0.3

12 M� - - - -

16 M� - - - non-homogeneous

20 M� - - - non-homogeneous

25 M� - - - non-homogeneous

30 M� - - - -

40 M� - non-homogeneous part. homogeneous homogeneous

60 M� non-homogeneous part. homogeneous - homogeneous

Table A.3: Classification of the evolutionary tracks for Z = 10−5 (Part 1)

Mass ‖ fK 0.4 0.5 0.6 0.7 0.8

12 M� - - - - -

16 M� non-homogeneous homogeneous homogeneous - homogeneous

20 M� non-homogeneous homogeneous homogeneous - homogeneous

25 M� homogeneous homogeneous homogeneous - -

30 M� - - - - -

40 M� - homogeneous - - homogeneous

60 M� homogeneous homogeneous homogeneous - homogeneous

Table A.4: Classification of the evolutionary tracks for Z = 10−5 (Part 2)
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Mass ‖ fK 0.0 0.1 0.15 0.2 0.3

12 non-homogeneous - non-homogeneous - non-homogeneous

16 non-homogeneous - - - non-homogeneous

20 non-homogeneous - non-homogeneous - non-homogeneous

25 - - non-homogeneous - non-homogeneous

30 non-homogeneous - non-homogeneous - part. homogeneous

40 non-homogeneous non-homogeneous - part. homogeneous homogeneous

60 non-homogeneous non-homogeneous - homogeneous homogeneous

Table A.5: Classification of the evolutionary tracks for Z = 10−3 (Part 1)

Mass ‖ fK 0.4 0.5 0.6 0.7 0.8

12 - non-homogeneous homogeneous - homogeneous

16 non-homogeneous homogeneous homogeneous - homogeneous

20 non-homogeneous homogeneous - homogeneous homogeneous

25 homogeneous homogeneous homogeneous homogeneous homogeneous

30 homogeneous homogeneous - - homogeneous

40 - homogeneous - - homogeneous

60 - - - - homogeneous

Table A.6: Classification of the evolutionary tracks for Z = 10−3 (Part 2)

Mass ‖ Element H He C N O F Ne Na Mg Al

12 M� (
√

)
√

X X
√ √

X X X X

16 M�
√

X X X
√ √

X X X X

20 M�
√ √

X X
√ √

X (
√

) X X

25 M�
√

(
√

) (
√

) X
√ √

X
√

X X

30 M� (
√

) (
√

) X X
√ √

X X X (
√

)

40 M�
√ √ √

(
√

)
√ √

X
√

X (
√

)

60 M� X X X X
√ √

X X X X

Table A.7: Eligibility of the elements with the help of the “dex-criterion” for Z = 0.004,
whereby

√
means eligible, (

√
) hardly eligible and X ineligible.

Mass ‖ Element H He C N O F Ne Na Mg Al

12 M� - - - - - - - - - -

16 M�
√ √

X X
√ √

X (
√

) (
√

)
√

20 M�
√ √

X X
√ √

X X X
√

25 M�
√ √

X X
√ √

X (
√

) X
√

30 M� - - - - - - - - - -

40 M� (
√

) (
√

) X X
√ √

X (
√

) X
√

60 M� (
√

) X X X
√ √

X (
√

)
√

(
√

)

Table A.8: Eligibility of the elements with the help of the “dex-criterion” for Z = 10−5,
whereby

√
means eligible, (

√
) hardly eligible and X ineligible.
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