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CHAPTER 1

Introduction

In the course of the last few decades, it has become increasingly clear that a large fraction of stars - up to
half of them - are located in stellar binary systems [1, p. 179]. An important point in understanding the
significance of the large binary ratio among massive stars is the fact that they are known to terminate
their life by graviational collapse, in which they form massive compact objects such as neutron stars or
black holes. These objects represent particularly interesting forms of stellar endproducts, which could
help to test the theories of gravity and many-body physics.

As interesting as this extraordinary compactness is, it is also the main challenge in the quest to find
such objects. Even stellar black holes with relatively high masses have, astrophysically speaking, very
small sizes. The Schwarzschild radius of a stellar black hole lies typically in the order of a few kilometers.
It is therefore not possible to detect a stellar black hole directly. One has to rely on indirect methods.

In the past four decades, many discoveries of stellar mass black holes in single-line spectroscopic
binary systems were made. Single line spectroscopic binaries (SB1) are binaries for which it is only
possible to observe one stellar spectrum, but which also show a significant variation of their radial
velocity curves. Most of them were discovered because their systems are extraordinarily luminous X-ray
sources with a very short timescale variability up to the millisecond regime, which suggests a binary
model where X-rays are emitted due to accretion of matter onto a compact object [2]. This kind of model
requires a close, interacting binary, as it is necessary to have a significant amount of accretable matter.
This matter is commonly provided from the stellar binary partner by stellar winds or even by Roche-lobe
overflow. But there are also massive binary systems in which the stars are not close enough for this sort
of accretion and therefore show no elevated X-ray flux when the system contains a stellar black hole.

This thesis aims to develop methods, that can help to find such systems. It attempts to develop methods
to determine the lower and upper mass-limits of an invisible companion in a wide SB1-system, where
it is possible to treat the stars as two single-stars. For this purpose, we use different approaches. To
constrain the mass of the invisible star, the recorded stellar spectrum of the visible star is evaluated and
the mass function f (M), which can provide a lower mass limit, is calculated. An upper mass limit is
determined by comparing the fluxes of both stars and calculating the smallest mass ratio for which the
flux ratio can be measured. Finally, it is possible to constrain a lower mass limit for the initial mass of
the invisible star, due to the fact that both of the stars have the same age.

In addition, one aim of the thesis is to determine stellar parameters which promise high masses of the
invisible companion to simplify the search for promising SB1-systems. Finally, the methods that were
developed in chapter 3 are applied to a selection of such SB1-systems.
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CHAPTER 2

Theoretical Background

The objects of investigation in this thesis are single line spectroscopic binary systems (short: SB1). They
consist of a visible star and an invisible companion, for which it is not possible to record a spectrum. In
the following, the visible star is designated by first or primary star and the invisible one as second star.
All physical quantities which are solely related to the visible star receive the index 1, all quantities which
are solely related to the invisible star receive the index 2. For example M1, L1 and τ1 are the mass, the
luminosity and the lifetime of the visible star, M2, L2 and τ2 are the mass, the luminosity and the lifetime
of the invisible star.

2.1 The Mass Function
1 Single line spectroscopic binaries are stellar binary systems for which it is only possible to observe the
stellar spectrum of one of the stars. The spectrum of the companion is not visible, because the object is
much fainter than the primary star.
The only evidence for the existence of an invisible companion in a stellar binary system is the Doppler
shift of the line positions in the spectrum of the more luminous star, due to the periodic motion of both
stars around their mutual barycentre. The frequency ν′, observed in the moving frame, is related through
the following equation to the frequency ν at rest and the radial velocity vrad of the first star:

ν′ = ν ·

√
c ± vrad

c ∓ vrad
,

where c is the velocity of light.
If the spectrum measurements lasted a sufficiently long time span, it is possible to generate a velocity
curve for the binary system. It shows the behaviour of the total radial velocity as a function of time.

Figure 2.1 illustrates the formation of the velocity curve for the simplest case of a circular orbit for
both stars. The line of sight is chosen to be from bottom to top. In step a and c the radial velocity
disappears and the tangential velocity reaches its maximum value. In constrast to that the tangential
velocity disappears in step b and d, whereas the radial velocity reaches its maximum. More complicated

1 This section is based upon Chapters 2 in ’An introduction to the evolution of single and binary stars’ by Benacquista, M. [1]
if not stated otherwise.
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Chapter 2 Theoretical Background

Figure 2.1: example of a radial velocity curve; step a and c vrad = 0 =⇒ vtan = max, step b and d vtan = 0 =⇒

vrad = max

examples can be seen in figure 2.2.

The shape of this curve depends on the radial velocity ż and the systemic motion γ:

vrad = ż + γ.

In general, the motion of both stars is located in two plain elliptical orbits for which the mutual barycentre
of the system lies in one of the two foci of the ellipse. Due to this geometry, it is possible to describe the
position of star i with polar coordinates ri and θi.

The position of the star along the line of sight is a function of the inclination angle i, the longitude of the
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2.1 The Mass Function

Figure 2.2: example for radial velocity curves of SB1-systems, figure taken from [1, S. 26]

periastron ω and the polar coordinate θ, as can be seen with the help of figure 2.3:

z = rsin(θ + ω)sin(i).

With a derivative with respect to time it is possible to express the radial velocity ż in terms of these
quantities:

ż = sin(i)(ṙsin(θ + ω) + rθ̇cos(θ + ω)). (2.1)

For this equation to be more useful, one can substitute ṙ and rθ̇ by more pictorial quantities of ellipse,
which can be done by substituting 2.2 and 2.3 into 2.1, whereby the new quantities a - the semimajor
axis-, e -the eccentricity- and P -the orbital period- are introduced.

ṙ =
2πa
P

esin(θ)
(1 + ecos(θ))

(1 + ecos(θ))√
1 − e2

(2.2)

rθ̇ =
2πa(1 + ecos(θ))

P
√

1 − e2
(2.3)

=⇒ ż =sin(i)
2πa

P
√

1 − e2
(esin(θ)sin(θ + ω) + ecos(θ)cos(θ + ω) + cos(θ + ω))
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Chapter 2 Theoretical Background

Figure 2.3: orbital elements of a SB1-systems, figure taken from [1, S. 22]

With the trigonometric relation cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y), one can simplify this equation.

ż = sin(i)
2πa

P
√

1 − e2
(ecos(ω) + cos(θ + ω))

Therefore, the total radial velocity vrad yields:

vrad = K(ecos(ω) + cos(θ + ω)) + γ. (2.4)

With some small calculations one can show that K is the semi-amplitude of the velocity

θ + ω =0 =⇒ vmax = K(ecos(ω) + 1) + γ

θ + ω =π =⇒ vmin = K(ecos(ω) − 1) + γ

vmax − vmin =Kecos(θ) + K + γ − Kecos(ω) + K − γ = 2K

K =
1
2

(vmax − vmin)

Therefore, one can obtain the values of the semi-amplitude of the velocity Ki, the eccentricity e, the
longitude of the periastron ω and the systemic motion γ by fitting 2.4 to the shape of the measured
velocity curve.
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2.1 The Mass Function

For a single-lined spectroscopic binary, one can only determine the semi-amplitude of the velocity
for the first star K1, for which the stellar spectrum is visible. With that information, it is possible to
determine the value of the semimajor axis a1 of the orbit of the visible star to a factor sin(i). In general it
is not possible to measure the inclination angle i.

K1 =
2πa1sin(i)

P
√

1 − e2
=⇒ a1sin(i) =

√
1 − e2K1P

2π
(2.5)

Naturally, the semi-amplitude of the velocity of the second star K2 is defined analogously:

K2 =
2πa2sin(i)

P
√

1 − e2
=⇒ a2sin(i) =

√
1 − e2K1P

2π
(2.6)

With the relation M1a1 = M2a2 =⇒ M1 = M2
a2
a1

, one can obtain an expression for the stellar masses
M1 and M2 in terms of the the semi-amplitudes of the velocities K1 and K2:

M1 = M2

(
a2sin(i)
a1sin(i)

)
= M2

K2

K1
. (2.7)

With the use of Kepler’s third law GM = 4π2a3

P2 , one obtains:

G(M2 + M1) =
4π2

P2

(
a1sin(i) + a2sin(i)

sin(i)

)3

One can eliminate the quantities a1sin(i), a2sin(i) and M1 using the relations 2.5, 2.6 and 2.7.

GM2

(
K1 + K2

K1

)
=

4π2

P2


√

1 − e2P
2π


3

(K1 + K2)3 1

sin3(i)

After a transformation, the equation yields an expression for the mass M2 of the invisible object.

M2sin3(i) =
P

2πG
(1 − e2)3/2(K1 + K2)2K1

Because the spectrum of the second star is not visible and therefore K2, the semi-amplitude of the velocity
of star 2, is not measurable, one has to resubstitute it with the relation: K2 =

M1
M2

K1.

M2sin3(i) =
P

2πG
(1 − e2)3/2

(
M1 + M2

M2

)2

K3
1

f (m) =
M3

2 sin3(i)

(M1 + M2)2 =
PK3

1

2πG
(1 − e2)3/2 (2.8)

Equation 2.8, called mass-function, provides an expression for the mass of the invisible star in a SB1-
system, where only one stellar spectrum is visible. The mass of the visible star M1 can be estimated by
an empirical relation between the spectral type of a star and its mass. The quantities P, K1 and e can
be determined by evaluating the recorded velocity curve. The inclination angle i can, in general, not be
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Chapter 2 Theoretical Background

measured. It is therefore only possible to determine a lower limit of the mass M2,min, which is achieved
by setting i = 90◦ =⇒ sin(i) = 1. A lower inclination angle i would correspond to a higher mass.
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CHAPTER 3

Methods

3.1 The Solution of the Mass Function

In order to obtain an estimation of the lower mass limit for the invisible star M2,min it is necessary to
solve the following equation:

M3
2

(M1 + M2)2 = f (M2) =⇒ M3
2 − f (M2)M2

2 − 2 f (M2)M1M2 − f (M2)M2
1 = 0 (3.1)

Equation 3.1 is a third degree polynomial. It has two imaginary and one real solution. Given that the

Figure 3.1: Real solution of equation 3.1 as a function of M1 for different values of the mass-function f (m)

mass of the invisible star is a physical quantity, the real solution is the interesting one. The polynomial
was solved with the calculation programme Mathematica. A visualisation of the real solution as a function
of the mass of the first star for different typical values of the mass function f (m) can be seen in figure 3.1.

M2,min =
f (M2)

3
−

21/3(− f (M2) − 6 f (M2)M1)
3C

+
C

3 · 21/3 (3.2)
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Chapter 3 Methods

with:

C =

(
2 f (M2)3

+ 18 f (M2)2M1 + 27 f (M2)M2
1 + 3

√
3
√

4 f (M2)3M3
1 + 27 f (M2)2M4

1

)1/3

.

3.2 The Flux Ratio of a Stellar Binary System

As seen in the previous chapter, the observed radial velocity curve provides a lower mass limit for the
invisible second star of the binary. To further limit the possible mass interval, an upper limit would be
desirable.
A possible way to find an upper limit for this mass is to find an expression of the flux ratio as a function
of the mass ratio q of the two stars. One can then conclude for which mass ratio q it is still possible to
measure the derived flux ratio. This mass ratio represents an upper limit qup for the possible mass ratio
range of the analysed SB1-system, due to the fact that the second star of the SB1-system is obviously not
visible.

The flux ratio f2/ f1 is defined as the flux which is emitted by the second star, compared to the flux of
the first star. Due to the fact that both stars have, in very good approximation, the same distance to the
observer, this ratio can also be expressed as a function of the intensities.

f2
f1

=
I(ν,T2)
I(ν,T1)

(
R2

R1

)2

It is assumed that Planck’s law, which describes the specific intensity Iν of a black-body for a given
frequency ν and temperature T , is a good approximation for a stellar spectrum.
This specific intensity is given by: [3, p. 112]

I(ν,T ) =
2hν3

c2 ·
1

exp
(

hν
kBT

)
− 1

.

Consequently, the ratio of intensities yields:

I(ν,T2)
I(ν,T1)

=
exp

(
hν

kBT2

)
− 1

exp
(

hν
kBT1

)
− 1

.

The specific intensity Iν is dictated by the effective temperatures Teff of the two stellar components of
the system. The surface temperature Teff of a star depends on its radius R and its luminosity L. These
physical quantities are connected via the Stefan-Boltzmann law: [3, p. 112]

Teff =
4

√
L

4πσR2 (3.3)

In order to express the flux ratio f2/ f1 in terms of the mass-ratio q, it is therefore necessary to have a
relation between mass and luminosity and also between mass and radius of a star.

This thesis uses an analytical expression obtained by Gräfener et al. [4] as mass-luminosity rela-
tion. They derived the dependence between mass and luminosity with the help of a grid for the mass
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3.2 The Flux Ratio of a Stellar Binary System

Figure 3.2: Linear function fitted on the converted intersections of 5 different evolution tracks with the isochrone at
106.25yrs

range M = 0.3 − 4000 M� and hydrogen mass fractions XH = 0.0 − 0.7 at a solar metallicity.
Equation 3.4, which is quadratic in log(M) and linear in XH, fits the results of log(L/L�) with a

minimal accuracy of 0.02 in the parameter range M = 12 − 250 M� and XH = 0.1 − 0.7, and with a
minimal accuracy of 0.05 in the parameter range M = 2−100 M� and XH = 0.1−0.7. The corresponding
parameter can be seen in tables 3.1 and 3.2.

log
(

L
L�

)
= [F1 + F2XH] + [F3 + F4XH] · log

(
M

M�

)
+ [F5 + F6XH] · log

(
M
M�

)2

(3.4)

Table 3.1: Coefficients F1−F6 for the parame-
ter range M = 2− 100 M� and XH = 0.1− 0.7;
maximum fitting error for log(L/L�) = 0.05

F1 1.967
F2 -2.943
F3 3.755
F4 1.206
F5 -0.727
F6 -0.026

Table 3.2: coefficients F1 − F6 for the parame-
ter range M = 12−250 M� and XH = 0.1−0.7;
maximum fitting error for log(L/L�) = 0.02

F1 2.875
F2 -3.966
F3 2.496
F4 2.652
F5 -0.310
F6 -0.511

A suitable relation between mass and radius for heavy stars was developed by using the theoretical HRD
on page 25 of the paper by Walborn, N.R. et al. [5]. The five points where the evolution tracks of the
15 M�,20 M�, 25 M�, 40 M� and 60 M� stars meet the isochrone at 106.25yr were converted with the help
of the Stefan-Boltzmann law 3.3 to yield the radii of these stars. The obtained values in combination
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Chapter 3 Methods

with the stellar masses were used to derive the linear mass-radius relation 3.5. The fit onto these data
points can be seen in figure 3.2.

R = (0.19 ± 0.06)
R�
M�
· M + (2.19 ± 0.18)R� (3.5)

Figure 3.3 shows the flux ratio f2/ f1 as a function of the mass-ratio q, which was obtained with the
mass-luminosity relation by Gräfener et al. [4] and the fitted linear mass-radius relation. As expected,

Figure 3.3: with mass-luminosity relation by Gräfener et al. [4] and fitted mass-radius relation calculated flux ratio
f2/ f1 as a function of mass ratio q, in a mass range of 0 ≤ q ≤ 1, ν = 544 THz/λ =550nm

the derived flux ratio is strongly dependent on the mass-ratio q of the SB1-system, the mass of the visible
star M1 and the frequency ν at which the observations are made. In figure 3.4, the range of the expected
frequency variation in the visual realm of the electromagnetic spectrum can be seen.
Finally, it is necessary to transform the flux ratio into a magnitude ratio to compare these theoretical

considerations with observational data. For historical reasons, magnitudes and intensities are connected
through the following relation: [3, p. 183]

∆m = m1 − m2 = −2.5 · log
(

f1
f2

)
mag

12



3.3 The Formation Time of a Stellar Binary System

Figure 3.4: Flux ratio f2/ f1 for the limiting frequencies of the visual realm for two different masses M1

3.3 The Formation Time of a Stellar Binary System

Another approach to limit the possible mass interval of the invisible companion is to use the fact that both
stars in the stellar binary system probably formed at roughly the same time and to use the correlation
between the lifetime τ of a star and its mass M.

There are two possible reasons why the second star in a SB1-system is not visible. The first possibility
is that both stars are main-sequence stars and the second star is too faint to be observable in close
proximity to the much brighter visible first star. That would mean that the second star is less massive
than the first star, which locates the binary system in the mass ratio range 0 ≤ q ≤ 1.

The second possibility is that the mass of the second stars is higher than that of the first star, so that it
has a shorter lifetime than the first star and could therefore already be in an endphase of stellar evolution.
That would mean that the second star is more massive than the first star. For this second possibility one
can derive a lower limit for the mass ratio range 1 ≤ q

The current time t, which has passed since the formation of the stellar binary system, can be expressed
as fractional age d.

t = d · τ1 =⇒ d =
t
τ1

(3.6)

If the second star is already in its endstage of stellar evolution, its lifetime has to be shorter than or equal
to the current time t = τ2. This inequation can be used to derive a lower limit for the mass-ratio by
examining the case t = τ2.

13



Chapter 3 Methods

Using equation 3.6, this condition can be transformed to the following equation:

τ2 = dlimit · τ1 (3.7)

A relation between lifetime τ and mass M can be taken from the lecture notes by Pols, O.R. [6]:
τ ∝ M1−η, where the fact was used that the main sequence phase is by far the longest evolution phase for
all considered stellar masses. Therefore, the lifetime of the first and the second star can be expressed as:

τi = AM1−η
i

A is assumed to be a constant coefficient. Inserting these relations in equation 3.7 yields:

AM1−η
2 = dlimit · AM1−η

1 .

To eliminate the mass of the second star M2, one substitutes it with the mass-ratio q =
M2
M1

=⇒ M2 =

qM1.

Aq1−ηM1−η
1 = dlimit · AM1−η

1

Finally, one obtains an expression for the lower limit of the time fraction dlimit as a function of the mass
ratio q:

dlimit = q1−η
=⇒ q = d

1
1−η

limit (3.8)

Equation 3.8 represents a root function with a moderate decay. Due to the fact that a very simple
approximation for the relation between luminosity L and mass M was assumed, equation 3.8 only
provides a rough estimate on the form of the derived relation. To improve the quantitive description, a
stellar grid for stars in the parameter range M = 0.8 − 120 M� was used. It was calculated with a stellar
evolution code by Georgy, C. et al. [7] for a metallicity of Z = 0.002 and by Ekström, S. et al. [8] for a
metallicity of Z = 0.014. In this thesis, only stellar models without rotation are considered. In order to

Table 3.3: coefficients A, B and C for the
parameter range M = 0.8 − 120 M� and
Z = 0.002

A 4.0159yr ± 0.0183yr
B −0.3848 M�

−1
± 0.0383 M�

−1

C 5.7030yr ± 0.0136yr

Table 3.4: coefficients A, B and C for the
parameter range M = 0.8 − 120 M� and
Z = 0.014

A 4.2709yr ± 0.0210yr
B −0.4028 M�

−1
± 0.0450 M�

−1

C 5.7000yr ± 0.0166yr

calculate a similiar expression to relation 3.8, it is useful to be able to express the calculated correlation
as a function. Function 3.9 was found to fit the 24 grid points sufficiently well.The first turn off point was
used as the end of the main sequence, which is marked by track step 110. The resulting fitting parameter
A, B and C and their errors are listed in table 3.3 for Z = 0.002 and in table 3.4 for Z = 0.014.

log(τMS ) = A · 10B·log(M)
+ C (3.9)
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3.3 The Formation Time of a Stellar Binary System

Figure 3.5: function 3.9 fitted on the stellar
grid points, calculated by Georgy, C. et al. [7]
for a metallicity of Z = 0.002

Figure 3.6: function 3.9 fitted on the stellar
grid points, calculated by Ekström, S. et al.
[8] for a metallicity of Z = 0.014

With the fitting function and the parameters that were obtained, one can derive an expression for the
fractional age t/τ1 as a function of the mass-ratio q, which can be seen by following the transformation
steps leading to equation 3.11. Unfortunately, it is not possible to eliminate the mass of the first star M1.

log(τi) = A · 10B·log(Mi) + C =⇒ τi = 10A·MB
i +C

(3.10)

10A·MB
2 +C

= dlimit · 10A·MB
1 +C

10A·(qM1)B
+C

= dlimit · 10A·MB
1 +C

=⇒ dlimit = 10A·MB
1 (qB

−1) (3.11)

equation 3.11 with the fitting parameter of Z =

0.002

dlimit = 104.0159yr·M
−0.3848 M

�
−1

1 (q−0.3848 M
�
−1
−1)

(3.12)

equation 3.11 with the fitting parameter of Z =

0.014:

dlimit = 104.2709yr·M
−0.4028 M

�
−1

1 (q−0.4028 M
�
−1
−1)

(3.13)

Therefore, the obtained relations 3.12 for the metallicity Z = 0.002 and 3.13 for the metallicity Z = 0.014
are plotted in figure 3.7 and in figure 3.8 for different masses of the first star M1 (0.8 M�, 1 M�, 5 M�,
10 M�, 20 M�, 50 M�, 100 M�). At this point, it is easy to see that the lower the mass of the first star
M1 is, the steeper is the decay of expression 3.12 and 3.13. For all plotted stellar masses, the function
converges towards the x-axis.
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Chapter 3 Methods

Figure 3.7: with the stellar grid calculated by
Georgy, C. et al. [7], derived expression for the
fractional t/τ1 as a function of the mass-ratio q for
different masses M1

Figure 3.8: with the stellar grid calculated by Ek-
ström, S. et al. [8], derived expression for the frac-
tional t/τ1 as a function of the mass-ratio q for dif-
ferent masses M1

Additionally, the metallicity of the SB1-system has a small effect, which can be verified by a close look
at figure 3.9. The relation for the smaller metallicity Z = 0.002 converges slightly more slowly towards
the x-axis than the relation for the higher metallicity Z = 0.014.

Figure 3.9: with the stellar grid by, calculated by Georgy, C. et al. [7] (for Z = 0.002) and Ekström, S. et al. [8] (for
Z = 0.014), derived expression for the fractional age t/τ1 as a function of the mass-ratio q for different masses M1,
comparision of the metallicities

By inverting relation 3.11, one can also derive a lower mass-limit qmin,time or a lower mass M2,min,time for
the second star for the case that it must be heavier than the visible star. Figure 3.10 and 3.11 illustrate that
relation for Z=0.002 or respectively for Z=0.014. Before drawing that conclusion, one must exclude the
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3.3 The Formation Time of a Stellar Binary System

mass ratio-range 0 ≤ q ≤ 1 for the SB1-system in question with the help of the two methods previously
described.

q = B

√
log(dlimit)

AMB
1

+ 1 (3.14)

The fractional age d can be expressed as:

dlimit =
t
τ1

=
t

10A·M1+C

Equation 3.14 can therefore be transformed into:

q =
B

√
log(t) − (AMB

1 + C)

AMB
1

+ 1 =⇒ M2 =

 B

√
log(t) − (AMB

1 + C)

AMB
1

+ 1

 M1

Figure 3.10: with the stellar grid calculated by
Georgy, C. et al. [7], derived expression for the
the mass-ratio q as a function of fractional t/τ1 for
different masses M1

Figure 3.11: with the stellar grid calculated by Ek-
ström, S. et al. [8], derived expression for the the
mass-ratio q as a function of fractional t/τ1 for dif-
ferent masses M1
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CHAPTER 4

Results

In order to apply the various methods developed in chapter 3, the observational data of two different
papers was used.
In the paper by Williams, S.J. et al. [9], the orbits of five Galactic O-type stars with significant single-lined
spectroscopic variation were published. The data comes from current measurements of the five systems
at the Cerro Tololo Inter-American Oberservatory (CTIO) and the Kitt Peak National Oberservatory, but
also from older measurements of the systems, which were collected from the literature.
The paper by Almeida L.A. et al. [10] lists the dynamical data from several O-type binary systems which
were observed during the VLT-Flames Tarantula Survey. These include 51 single-line spectroscopic
binary systems (SB1).

By fitting the observed velocity curves, the authors of both papers obtained values for the semiamplitude
of the velocity K, the orbital period P and the eccentricity e, which are necessary to calculate a mass
function f(M) using equation 2.8. These calculations were carried out in this thesis and can be seen in
tables A.4 and A.5 in column (7).

To calculate a lower mass-limit for the invisible star M2,min, one has to determine the mass of the
visible star M1. For this purpose, the observed spectra are evaluated to obtain values for the effective
temperature Teff , the gravitational acceleration g and the rotational velocity vsin(i) at the equator of the
star, multiplied with the sine of the inclination angle i. Using these physical qunatities, it is possible to
calculate other important quantities of the primary star such as its luminosity or its mass. Some of the
luminosities of the primary stars of the SB1s, listed in Almeida L.A. et al. [10] are already calculated
in a paper by Walborn N.R. et al. [5]. Unfortunately, this data could only be determined for 33 of the
systems. Therefore the analysis could just be done for these 33 systems. An estimation of the error bars
is not given, which is why a propagation of uncertainty was omitted.

This data was used to further determine the mass and other useful physical quantities of the visible star
by using the stellar evolution code "BONNSAI1 (Schneider et al. 2014)". The obtained data is listed in
table A.3.

In addition, we used equation 3.2 to calculate the lower mass limit M2,min of the invisible star and the
resulting lower limit for the mass ratio qmin. The results of this calculation can be seen in column (8) and
(9) of tables A.4 and A.5.

For the calculation of the optical characteristics of the systems, we assumed a hydrogen mass fraction

1 The BONNSAI web-service is available at www.astro.uni-bonn.de/stars/bonnsai.
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Table 4.1: comparision of flux ratio and magnitude differences at the most probable mass ratio qprop between the
results of Williams, S.J. et al [9] (index Wil.) and the results of this thesis (index T)

system qprob
I2
I1

(qprob)Wil. ∆VWil./mag I2
I1

(qprob)T ∆VT/mag

HDE 308813 0.26 0.08 2.7 0.07 2.9
HD 152147 0.18 0.01 4.8 0.07 2.9
HD 164536 0.30 0.12 2.3 0.12 2.3
BD-16°4826 0.19 0.06 3.1 0.05 3.3
HDE 229232 0.16 0.05 3.2 0.03 3.6

XH of 0.7. Moreover, we chose the midpoint of the V-Filter at 544T Hz(=̂550nm) as analysing frequency.
In contrast to the calculations for the lower mass limit, where we used the actual mass, the initial mass of
the first star Mini was used, as the mass-radius relation was fitted using the initial mass of the star. We
also used the observed effective temperature Teff for the description of the blackbody-spectrum of the
first star. Only the resulting upper mass limit qup was then calculated with the actual mass Mact of the
primary star. Both masses were determined with "BONNSAI" and are also listed in table A.3 in columns
(3) and (4).

To test the results of the flux ratio and magnitude difference, we calculated these physical quantities for
the five systems presented in the paper by Williams, S.J. et al. [9], at the mass ratio which they determined
as propable mass ratio qprop. They assumed a uniform mass ratio distribution, which is motivated by
observation of O-type stars . The authors of the paper by Williams, S.J. et al. [9] used listed values from
the book "The Observation and Analysis of Stellar Photospheres" by Gray, D. F. [11] to determine flux
ratio and magnitude difference. The comparision can be seen in table 4.1. The results from both methods
are in relatively good agreement with each other. Solely for system HD 152147, the results differ slightly
more. However, the knowledge of the flux ratio and the magnitude difference at the most probable mass
ratio qprop is not useful, in particular if the used mass ratio distribution is flat. Therefore this thesis takes
an other approach.

The results of the calculations can be seen in tables A.4 and A.4. In columns (10) and (11) the flux
ratio f2/ f1 and the magnitude difference ∆m respectively, at qmin are determined to check how sensitive a
measurement would have to be to give a complete constraint on the mass of the invisible star. Columns
(12), (13) and (14) list values of the mass ratio qup for the different flux ratios f2/ f1 0.1, 0.2 and 0.3,
which symbolise different sensitivity limits of the measurements and should give an idea to which extent
an improvement of the accuracy of the measurements could improve the constraints on the determined
mass-intervals. To obtain these limits for qup, the function for the flux ratio f2/ f1 , which was developed
in chapter 3.2, was numerically inverted.

It may also prove useful to sort the analysed systems into different groups according to the likelihood
that the mass range of 0 ≤ q ≤ 1 can be excluded for the system. With the help of this sorting mechanism,
we introduced four different groups. Group 1 consists of systems where qup10% is above qmin, making it
highly unlikely that the flux ratio can be measured accurately enough to give a complete constraint on the
mass of the second star M2. Group 2 and group 3 comprise systems where qmin lies between qup10% and
qup20%, and between qup20% and qup30% respectively. Group 4 consist of systems where qmin lies above
qup30%. At least for the systems in group 4, one can expect that the mass range of 0 ≤ q ≤ 1 can be
excluded.

For systems fulfilling this criterion, the third developed method can raise the lower mass limit. In
columns (15) and (16) of tables A.4 and A.4, the constraints for the initial mass of the second star, due to
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fact that the systems formed roughly at the same time, are given.
Some of the analysed systems are quite young and can therefore not contain a star which has already

terminated its stellar evolution. For this reason, some of the calculated values are unreasonably high. A
mass range of q ≥ 1 can therefore be excluded for these systems.

Given the approximations that were made to develop the used methods, and the hence resulting
inaccuracy, the calculated constraints may be more interesting for members of groups 3 and 4.
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CHAPTER 5

Conclusions

The SB1 systems analysed in the paper by Almeida L.A. et al. [10] proved to be excellent candidates
for the applied evaluation process, as almost all of them show long orbital periods P and high semi-
amplitudes of the velocity K1. Hence the systems have a high mass function f (m) and consequently a
relatively high lower mass ratio qlow. This circumstance makes it more unlikely that the second star could
be overlooked. All of the members of group 2 to 4 are from this paper by Almeida L.A. [10]. Most of
them have orbital periods P in the order of a few hundred days. This fact is invidious, because it means
that such promising candidates can only be detected with observations over a long time span, which
poses a large effort.

Unfortunately, the five systems analysed in the paper by Williams, S.J. et al.[9] are not as suitable as
the others. They have relatively short orbital periods of just a few days, which is obviously too small
to produce a high mass function f (m). Consequently, they have relatively small lower mass limits qlow,
which is probably why it is not possible to see the second star. All of them are sorted into group 1.

It also emerged that massive primaries are better candidates for this kind of analysis. The flux ratio
ratio f2/ f1 converges faster to a value of 1.0. Therefore, the upper mass limits qup,i% are lower than for
less massive stars.

In the course of the development of the flux ratio qup, it became clear that particularly the mass-radius
relation has a strong influence on the calculated flux ratio. In this thesis, a mass-radius relation was used
that is a good description for stars of the age 106.25yrs. Obviously, this relation becomes more and more
inaccurate with increasing age of the system. For this reason, it would be a good improvement of the used
methods to consider the evolutionary changes of the important physical quantities effective temperature
Teff , luminosity L and radius R. Especially the increase of the stellar radius along the main sequence
should be taken into account.

To provide a self-consistent evaluation the mass-radius relation was used for both stars. Even if the
"BONNSAI" values differ from that, which they do especially for the older systems, the effect is not very
significant, because it partly cancels itself out, due to the fact that we calculate the quadratic fraction of
the radii. However as a consequence, the determined flux ratio is systematically slightly too high for the
older systems.

As expected, it was possible with the help of the third method to determine a lower limit of the initial
mass, which is significantly higher than the lower mass limit calculated by means of the mass function.
Adequate models that describe the possible mass loss up to the invidual actual age of the analysed systems
could therefore provide a higher lower mass limit for the actual mass than the observations of the radial
velocity curve, if it is possible to exclude the mass ratio range of 0 ≤ q ≤ 1.

At this point, the analysed systems can be sorted into the introduced groups and their possible mass
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range can be visualised, which is done in figures 5.1, 5.2 and 5.3.
Most of the systems are sorted into group 1, which matches our expectations. There are eight systems

in group 2 for which it might be possible to record a second spectrum with more accurate observations.
These systems are not necessarily compact objects.

Group 3 merely consists of the system 429, and group 4 consists of the systems 064, 332 and 802. For
these systems, it would most likely be possible to detect the second star, if it were a star on the main
sequence. It is therefore likely that these partners are in fact compact objects, more precisely stellar black
holes, because they are too heavy for neutron stars.

These four systems are pretty interesting for physicists, seeing that they probably consist of a black
hole and a visible star, that will also terminate its life by forming a black hole. Such relatively close black
holes are likely to merge. A merger of massive stellar black holes produces gravitational waves, which
could be measured by LIGO.
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Figure 5.1: possible mass-intervals for group 1, which is defined by qmin < qup10%
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Figure 5.2: possible mass-intervals for group 2, which is defined by qup10% < qmin < qup20%

Figure 5.3: possible mass-intervals for group 3, which is defined by qup20% < qmin < qup30% and possible mass-
intervals for group 4, which is defined by qmin > qup30%
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APPENDIX A

Tables

Table A.1: the stellar grid points, calculated by Georgy, C. et al [7] for a metallicity of Z = 0.002
step initial mass time current mass log(L) log(Teff)
110 0.80 1.14964e+10 0.80 0.158 3.787
110 0.90 7.25017e+09 0.90 0.338 3.805
110 1.00 4.98845e+09 1.00 0.514 3.835
110 1.10 3.37235e+09 1.10 0.648 3.862
110 1.25 2.36210e+09 1.25 0.852 3.903
110 1.35 1.92228e+09 1.35 1.011 3.931
110 1.50 1.44475e+09 1.50 1.205 3.964
110 1.70 1.06116e+09 1.70 1.453 4.003
110 2.00 6.72549e+08 2.00 1.727 4.047
110 2.50 3.77285e+08 2.50 2.098 4.105
110 3.00 2.42421e+08 3.00 2.392 4.151
110 4.00 1.25522e+08 4.00 2.838 4.224
110 5.00 7.80867e+07 5.00 3.176 4.277
110 7.00 4.03362e+07 7.00 3.668 4.351
110 9.00 2.57252e+07 9.00 4.021 4.401
110 12.00 1.52435e+07 11.97 4.404 4.452
110 15.00 1.10999e+07 14.92 4.685 4.486
110 20.00 7.95762e+06 19.91 5.024 4.525
110 25.00 6.50584e+06 24.78 5.261 4.547
110 32.00 5.33918e+06 31.51 5.497 4.563
110 40.00 4.54429e+06 39.10 5.686 4.571
110 60.00 3.58240e+06 57.79 5.991 4.559
110 85.00 3.04612e+06 80.91 6.221 4.514
110 120.00 2.67199e+06 111.75 6.429 4.345



Appendix A Tables

Table A.2: stellar grid points, calculated by Ekström, S. et al [8] for a metallicity of Z = 0.014
step initial mass time current mass log(L) log(Teff)
110 0.80 2.15078e+10 0.80 -0.207 3.715
110 0.90 1.34162e+10 0.90 -0.009 3.741
110 1.00 8.49545e+09 1.00 0.157 3.762
110 1.10 5.46053e+09 1.10 0.305 3.780
110 1.25 4.22249e+09 1.25 0.582 3.800
110 1.35 3.13865e+09 1.35 0.738 3.817
110 1.50 2.23918e+09 1.50 0.938 3.839
110 1.70 1.64515e+09 1.70 1.189 3.864
110 2.00 1.01704e+09 2.00 1.484 3.912
110 2.50 5.42325e+08 2.50 1.883 3.978
110 3.00 3.23213e+08 3.00 2.198 4.036
110 4.00 1.53435e+08 4.00 2.686 4.123
110 5.00 8.89959e+07 5.00 3.052 4.188
110 7.00 4.21159e+07 7.00 3.583 4.279
110 9.00 2.65086e+07 8.99 3.965 4.338
110 12.00 1.54981e+07 11.94 4.366 4.396
110 15.00 1.11333e+07 14.81 4.654 4.431
110 20.00 7.81899e+06 19.67 5.001 4.467
110 25.00 6.37078e+06 24.18 5.235 4.480
110 32.00 5.25168e+06 30.11 5.460 4.476
110 40.00 4.47708e+06 36.26 5.642 4.452
110 60.00 3.55952e+06 36.261 5.910 4.412
110 85.00 3.04802e+06 49.232 6.146 4.517
110 120.00 2.69160e+06 63.625 6.348 4.433



Table A.3: by BONNSAI calculated physical quantities of the primary stars compared to the oberved quantities
system HDE 308813 HD 152147 HD 164536 BD-16°4826 HDE 229232

Teff,obs /kK (1) 29.9 ± 0.3 27.8 ± 0.5 37.4 ± 0.9 39.9 ± 6.3 41.7 ± 1.3
Teff,rep /kK (2) 29861+323

−289 27784+495
−529 37278+875

−901 31594+7788
−6863 41726+1230

−1463
log(gobs) /cm s−1 (3) 3.73 ± 0.09 3.10 ± 0.06 4.25 ± 0.17 4.04 ± 0.40 4.05 ± 0.14
log(grep) /cm s−1 (4) 3.77+0.08

−0.10 3.10+0.07
−0.06 4.14+0.08

−0.05 4.15+0.11
−0.18 4.12+0.06

−0.11

vsin(i)obs / km s−1 (5) 204 ± 10 150 ± 28 230 ± 14 131 ± 28 273 ± 19
vsin(i)rep / km s−1 (6) 200+16

−7 150+28
−29 230+15

−16 130+28
−29 270+23

−16

M1,act (7) 18.4+1.6
−1.4 33.2+7.7

−3.5 25.5+2.5
−1.7 13.4+12.1

−7.1 36.6+5.0
−5.5

M1,ini (8) 18.6+1.7
−1.4 38.0+7.7

−6.3 25.6+2.6
−1.8 13.4+12.3

−7.3 37.2+5.5
−5.6

R /R� (9) 9.3+1.5
−1.3 26.7+4.4

−3.3 7.1+0.7
−0.7 5.9+2.6

−2.3 8.5+1.7
−0.8

Age /Myr (10) 6.16+0.32
−0.32 3.94+0.67

−0.67 0.02+1.81
−0.01 1.49+3.48

−1.50 1.54+0.62
−1.30

system spect. type M1,act M1,ini Teff,obs log(Lobs/L�) Teff,rep log(Lrep/L�) R Age
/M� /M� /K /K R� Myr

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

064b O7.5 II(f) 48.2 51.8 35500 5.86 35469 5.82 22.2 2.94
073 O9.5 III 20.0 20.4 31800 4.99 31820 4.95 9.7 5.72
086 O9 III((n)) 35.8 37.8 32800 5.62 32806 5.57 18.2 3.76
093 O9.2 III-IV 22.0 21.0 32300 5.01 32325 4.96 9.6 5.48
171 O8 II-III(f) 31.8 32.8 34600 5.48 34617 5.45 14.5 3.74
184 O6.5 Vnz 26.6 26.8 38900 5.07 38931 4.99 6.8 2.30
191 O9.5 V 18.6 18.4 32900 4.78 32891 4.74 7.2 5.18
243 O7 V(n)((f)) 30.8 31.0 37900 5.36 37886 5.32 10.6 3.26
256 O7.5-8 V((n))z 23.2 23.4 36900 4.99 36911 4.85 6.5 3.28
277 O9 V 21.4 21.6 33900 5.00 33889 4.96 8.7 4.78
332b O9.2 II-III 27.2 27.8 32100 5.35 32093 5.32 14.9 4.82
333b O8 II-III((f)) 51.4 56.6 34600 5.93 34612 5.86 23.1 2.74
404 O3.5 V(n)((fc)) 39.0 39.6 43900 5.49 43922 5.36 8.2 1.72
409 O4 V((f))z 56.0 59.8 44900 5.90 44922 5.87 13.4 1.66
429 O7.5-8 V 27.8 27.2 36900 5.22 36911 5.18 9.4 3.60
440b O6-6.5 II(f) 49.8 51.8 38500 5.85 38542 5.79 17.6 2.60
441 O9.5 V 20.0 20.2 32900 4.93 32931 4.89 8.6 5.22
479 O4-5 V((fc))z 35.2 35.4 42900 5.24 42886 5.26 7.8 0.60
481 O8.5 III 28.0 29.4 33900 5.37 33911 5.34 13.2 4.38
532 O3 V(n)((f*))z + OB 52.8 54.8 45900 5.80 45923 5.75 11.6 1.48
603 O4 III(fc) 65.0 69.4 43400 6.03 43390 5.99 18.0 1.84
613 O8.5 Vz 21.0 21.4 34900 4.95 34935 4.91 7.8 4.32
619 O7-8 V(n) 23.0 23.0 36900 4.91 36931 4.85 5.9 3.56
631 O9.7 III(n) 16.2 16.4 30400 4.66 30413 4.63 7.2 7.16
645 O9.5 V((n)) 17.8 17.8 32900 4.70 32911 4.56 6.0 5.00
657 O7-8 II(f) 37.2 39.6 35500 5.65 35485 5.62 16.5 3.30
702 O8 V(n) 24.6 24.8 35900 5.13 35889 5.09 9.2 3.96
736 O9.5 V 18.6 18.8 32900 4.81 32891 4.76 7.3 5.18
743 O9.5 V((n)) 18.6 18.4 32900 4.78 32981 4.74 7.2 5.18
750b O9.5 IV 17.2 17.2 32300 4.67 32334 4.62 6.5 5.38
769 O9.7 II-III 17.0 16.6 29500 4.75 29500 4.72 8.6 7.24
802 O7.5 Vz 27.8 27.4 36900 5.23 36911 5.18 9.6 3.60
812 O4-5 V((fc)) 40.8 41.8 42900 5.58 42879 5.55 10.7 2.04
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