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Abstract
Most close massive binary stars with initial periods of a few days go through a contact phase, during
which both stars simultaneously overflow their Roche lobes. Previous work exhibits a discrepancy
between stellar evolution models and observational constraints, in mass ratio among others, indicating
that some physics must be missing from the models. This work aims to alleviate this discrepancy by
investigating in the effect of rejuvenation on the overall mass ratio evolution. A set of 12 new detailed
binary evolution models is computed, by taking an evolution model from previous work as a starting point,
and varying the levels of rejuvenation efficiency. The results show that rejuvenation has a considerable
impact on the overall mass ratio evolution, and can affect the longevity of the models at a mass ratio
close to 1. The way in which the mass ratio evolution is affected varies depending on the type of mixing
process that causes the rejuvenation.
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CHAPTER 1

Introduction

When observing the star-spattered sky with the unaided eye, numerous light sources appear as single
stars. Using different tools (e.g. spectra or light curves) many of these light sources turn out to be
two separate star components orbiting around each other. Even more, some of them can be – using a
top-quality telescope – visually resolved as two separate components. These gravitationally bound star
systems are called binary stars. In fact, it turns out that over half of the stars are found in binary or even
multiple star systems. Investigating in binary evolution is an essential part of stellar astrophysics in order
to understand black holes and pulsars with stellar companions, binary progenitors of gravitational waves
and X-ray binaries among others. Moreover, binary stars may also provide strong constraints on internal
stellar mixing processes, which still need to be calibrated properly (Pols, 2009).

The evolution of binary stars is predominantly dependent on the Roche lobe overflow of the two
components. The Roche lobe of a star is a three-dimensional equipotential surface through the inner
Lagrangian point 𝐿1, where all forces cancel out (cf. fig. 3.1). Material within the Roche lobe is
gravitationally bound to the star. Stars typically expand during hydrogen burning. If the initial orbital
separation of two binary components is big enough, the Roche lobe is large enough to ensure that the
stellar radius never overflows. Hence, they evolve as if they were single stars. In contrast, close binaries
with periods of only a few days (and small orbital separations) may overflow their respective Roche
lobes (Eggleton, 1983). Typically, mass is transferred from the star that overflows its Roche lobe (called
the “donor”), via the Lagrangian point 𝐿1 to its companion (called the “accretor”). When both stars
simultaneously overflow their Roche lobes, they “touch” each other, forming what is known as a contact
binary with a shared common surface, as depicted in fig. 1.1. At contact, mass is transferred to the
amount, so that both stellar components overflow their Roche lobes to the same degree. This thesis
focuses on the evolution of massive contact binaries burning hydrogen in their cores. Both stars have
masses > 10 M⊙ and they may share a common surface over a nuclear timescale for millions of years.
Such contact binaries have been observed in our satellite galaxies – the Large (LMC) and the Small
Magellanic Clouds (SMC) – as well as in our Milky Way. A significant fraction of massive binary stars
may end up merging to form new stars (de Mink et al., 2013). These can lead to exciting phenom-
ena like peculiar supernovae, which single-star models find challenging to explain (Marchant et al., 2016).

Menon et al., 2021 performed the first detailed study of massive contact binaries, by computing
5580 binary evolution models with the stellar evolution code MESA (Modules for Experiments in
Stellar Astrophysics, Paxton, Bildsten et al., 2011 - Jermyn et al., 2023) over a range of initial binary
parameters, for the LMC and SMC. They found that stellar evolution models remaining in contact for
a long time undergo mass exchange – so that their components evolve towards having equal masses.
As a consequence, these models spend a considerable amount of time at mass ratios close to one (i.e.
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Chapter 1 Introduction

Figure 1.1: An artist’s impression of the massive contact binary VFTS 352 in the Large Magellanic Cloud. Credits:
ESO/L. Calçada 2023

both components almost have the same masses). If these models reflected reality, most of the observed
contact systems should also be found at a mass ratio close to one. Spectroscopic surveys of eclipsing
binaries have found 2 massive contact binaries in the SMC, around 40 in the LMC and 17 in the Milky
Way so far. The reported mass ratios 𝑞 for most of these systems were < 0.9, which was in contradiction
with the findings of Menon et al., 2021. This discrepancy could be alleviated when accounting for the
possibility that the reported contact binaries are not exactly in contact but only nearing contact, in which
case the mass ratios of most of the observed systems are explained properly (Menon et al., 2021). But
still, there are less massive contact binaries observed at a mass ratio close to one than expected from the
findings of Menon et al., 2021. Consequently, some physics must be missing from their contact binary
evolution models in order to be able to reflect reality.

There have already been first approaches to understand this discrepancy by Fabry et al., 2023: They
expect heat transfer to happen from one stellar component to another, as two stars with different total
masses have different surface temperatures. Because the two stars “touch” each other, the different
temperatures may equalize.1 When heat is transferred, the radius of the stellar component is affected.
That again influences the amount of mass that is transferred from one component to another and therefore
affects the evolution of mass ratio. Fabry et al., 2023 incorporated heat transfer during contact phases so
that temperature is constant along a stellar layer within the common envelope. With the computation of
one contact binary model, they found that the mass ratio can diverge from 1, for a longer timescale than
the models of Menon et al., 2021.

This thesis investigates an alternative physics process which considers the rejuvenation of the hydrogen
burning core, which may affect the mass ratio evolution. In a single main sequence star (i.e. it burns
1 In Menon et al., 2021 heat transfer was not included, arguing that surface temperatures of the stellar components typically

differ by less than 20%.
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Chapter 1 Introduction

hydrogen), the central hydrogen abundance decreases with time and the core contracts in mass. When a
star in a binary system (during main sequence) gains mass from its companion, it triggers convection
instabilities which can expand the core and mix in some of the material just above the core, which
has a higher hydrogen abundance than the core itself. Depending on the efficiency of the mixing, the
mass gain may lead either to a rejuvenation and an expansion of the core, or even to a prevention of
it, causing the core not to respond to the accretion and continuing its contraction (Braun and Langer, 1995).

The efficiency of rejuvenation and its effects on binary evolution is not well constrained, particularly
in the case of contact binaries. An effective rejuvenation during mass transfer in a contact configuration
is expected to be associated with the evolution towards having equal masses: If both stars reach a mass
ratio of 1 (i.e. they have the same total masses) and are rejuvenated effectively to the same degree, their
radii will also be equal. They overflow their Roche lobe to the same degree and no mass is transferred.
The mass ratio remains at one. This situation may change depending on the efficiency of rejuvenation,
which may lead to stars with equal masses to have different radii and thereby cause a mass transfer from
the more expanded star to its companion. In short, an evolution towards a mass ratio close to one is
expected if rejuvenation occurs effectively throughout the evolution. It is expected to be prevented if
rejuvenation does not occur.

The aim of this thesis is to investigate in the effect of rejuvenation to the overall mass ratio evolution of
contact binaries. First, the efficiency of rejuvenation is considered in a contact binary model of Menon
et al., 2021, and how it could affect the longevity of the models at a mass ratio close to 1. A set of new
models is computed, corresponding to the "System 2" exemplary model in their paper, by only varying
the levels of rejuvenation efficiency. It is explored how they evolve until the end of the main sequence or
until they merge.

This thesis is divided into the following chapters: Chapter 2 gives a short introduction to the most
relevant basics in theory. Chapter 3 shows the relevant methods and physical assumptions that are
implemented in the stellar evolution code in order to compute the binary evolution models, as well as the
tools that are used to evaluate the results. Chapter 4 deals with the results. They are discussed in chapter
5 and summarized in chapter 6.

This work will open up a new direction for prospective studies that may be intended to calibrate
the exact mixing physics by calculating large grids of binary evolution models. Moreover, it may help
solve the discrepancy between the predictions of current models and the properties of observed contact
binaries.
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CHAPTER 2

Mixing and Mass Transfer in Massive Stars

This chapter is intended to give a short introduction to the most relevant basics in theory. Sections 2.1
until 2.3 feature the mixing processes that are used in this thesis in order to modify the efficiency of
rejuvenation. Sections 2.4 and 2.5 deal with basic concepts of binary interaction.

2.1 Convection

The following paragraphs are based on Pols, 2009.

Thermal motions of gas particles naturally cause small fluctuations from spherical symmetry. Consid-
ering an upwards displaced mass element, its density will decide about these initial fluctuations to grow
or to stay negligible: If the upwards displaced mass element is denser than its surrounding, it will fall
back into the direction of its original position. In this case, the layer is said to be dynamically stable. If it
is less dense than its surrounding, the buoyancy force will lead to a growing upwards displacement. An
initially small fluctuation is then enough to displace a gas element over a macroscopic distance. The
layer is said to be dynamically unstable.

Hence, convection can be described as “cyclic macroscopic motions of [gas bubbles]” (Pols, 2009)
due to dynamical instability. The gas bubbles move up (down), until they dissolve and emit (absorb)
their heat to the surrounding, analogously with their chemical composition. Therefore, convection is an
efficient process of heat transport and mixing. The radial distance, over which the gas bubbles travel,
until they resolve into their surroundings, is commonly called the “mixing length” 𝑙m. The exact value
for 𝑙m is unknown. But it is assumed to be in the order of the local pressure scale height 𝐻p, where 𝐻p is
the distance, over which the pressure undergoes a change by a factor of e.

The previously elucidated condition for dynamical stability (the density of the displaced gas element
is bigger than the density of its surrounding) can be mathematically rephrased to the Ledoux criterion for
stability against convection: A stellar layer is stable against convection, if

∇rad < ∇ad + ∇𝜇 (2.1)

holds (for an ideal gas), where ∇rad (the radiative temperature gradient) is a spatial temperature gradient
that a star in a hydrostatic equilibrium has, if energy was transported only by radiation. The non-spatial
adiabatic temperature gradient ∇ad describes the behavior of temperature under adiabatic compression
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Chapter 2 Mixing and Mass Transfer in Massive Stars

or expansion of a gas element. The other relevant gradients can be defined as

∇ :=
(

d ln𝑇
d ln 𝑃

)
s
, ∇e :=

(
d ln𝑇
d ln 𝑃

)
e
, ∇𝜇 :=

(
d ln 𝜇

d ln 𝑃

)
s
. (2.2)

∇ is the actual spatial temperature gradient of the surrounding. ∇ = ∇rad consequently holds for a
radiative envelope. ∇e is the actual non-spatial temperature gradient of the gas element. It describes the
behavior of the temperature of the gas element under compression or expansion. ∇e = ∇ad holds for adia-
batic behavior of the gas element. ∇𝜇 is the spatial gradient of mean molecular weight throughout the star.

Coinciding with the models in this thesis, massive stars are expected to have convective cores, as

∇rad ∝ 𝜅
𝑙

𝑚
, (2.3)

where 𝑙 is the local luminosity, 𝑚 is the mass coordinate and 𝜅 the opacity. Nuclear energy generation in
massive stars is strongly peaked towards the center (i.e. they have a big 𝑙/𝑚 in the stellar center), because
the temperature sensitive CNO-cycle dominates the nuclear energy generation. That leads to a rapid drop
of nuclear energy generation, when temperature decreases outwards the center. Consequently, ∇rad drops
going further away from the center. Dynamical instability is halted at the threshold ∇rad = ∇ad +∇𝜇. The
extent of the convective core is essential, as it defines the amount of burning material that is available.
Convection effectively mixes unprocessed material to the zones of nuclear energy generation.

The convective core retracts during burning hydrogen: The amount of helium in the core grows and
the mean molecular weight 𝜇 rises. As 𝜅 ∝ 𝜇

−1, the opacity decreases. That leads to a decrease of ∇rad
(cf. eq. 2.3) and a retraction of the threshold, where ∇rad = ∇ad +∇𝜇. The amount of hydrogen decreases
during nuclear burning. Consequently, the retracting core leaves behind a composition gradient reflecting
the evolution of its chemical composition.

2.2 Overshooting

This section features the main aspects of the mixing process called “overshooting”. It is based on Pols,
2009 unless otherwise indicated.

As described in section 2.1, the buoyancy force on a displaced element vanishes at the boundary of
the convective zone, where

∇rad = ∇ad + ∇𝜇 . (2.4)

Inside this boundary (within the convective core) the buoyancy force on a gas element exerts upwards,
outside this boundary it exerts downwards1. As soon as an upwards moving gas bubble reaches the
boundary, it will not immediately stop due to its inertia. Instead, it overshoots the boundary and its
motion gets constantly slowed down due to the now inside directed buoyancy force. The distance, over
which the overshooting gas bubbles penetrate into the envelope (from now on called the “extent of the
overshooting region”), is not certainly known from theory. Analogously to the mixing length in section
2.1, it is commonly parametrized by a fraction of the local pressure scale height 𝐻p at the boundary of
1 Downwards means in the direction to the stellar center, upwards means the direction to the stellar surface.
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Chapter 2 Mixing and Mass Transfer in Massive Stars

the convective core.

Although the extent of the overshooting region is poorly determined, it has a considerable impact on
stellar evolution: A larger overshooting region mixes more burning material into the convective core,
with the consequence that hydrogen burning lasts longer. In addition to that, it increases the luminosity
as well as the radius of the star, leading to a considerable impact on the fate of binary stars (cf. section 2.5).

As described in the previous section 2.1, the retracting convective core of massive stars leaves behind
a gradient in mean molecular weight. That does not change when accounting for overshooting, as the
overshooting region is expected to recede analogously. When a star gains mass from its companion,
the boundary, where eq. 2.4 holds, will move outwards in mass, causing the overshooting region to
encounter the previously left behind composition gradient. When considering an overshooting gas bubble
penetrating into a region of such a composition gradient, the gas bubble consists of quite processed
material from the core. On the contrary, the composition gradient of the surrounding leads to a continuous
decrease in mean molecular weight in the outward direction. Consequently, the density of the gas bubble
is considerably higher than the density of its surrounding. That continuously increases the downward
buoyancy force. Hence, a composition gradient operates as a stabilizing effect against overshooting
(Marchant, 2018, sec. 5.1.2).

2.3 Semiconvection

Semiconvection is the third mixing process that is relevant for this thesis. The following paragraphs are
based on Kippenhahn, Weigert and Weiss, 2012.

In a dynamically stable layer (i.e. a radiative envelope, cf. section 2.1), an upwards displaced element
will fall back into the direction of its original position. Arrived at the original position, it has a momentum
causing the element to exceed its original position. Under the assumption of adiabatic compression and
expansion, as well as neglecting drag forces (due to the small deflection) the mass element starts to
oscillate around its original position with a constant amplitude, coinciding with its original displacement.

Considering a deviation from adiabatic expansion has an effect on the amplitude of the oscillating gas
element. The following case differentiation consequently takes ∇ instead of ∇rad, and ∇e instead of ∇rad,
as defined in eq. 2.2.

• ∇ < ∇e
In this case, the upwards displaced element has a smaller density, coinciding with a smaller
temperature than its surrounding. The element receives energy by radiation from its surrounding,
and the difference in density gets smaller (as it gains temperature). That leads to a smaller
downward buoyancy force (analogously with the downward displacement). An oscillation with a
slowly decreasing amplitude is the consequence. In this case, one speaks of vibrational stability
via radiative damping.

• ∇e < ∇ < ∇e + ∇𝜇

Without the stabilizing composition gradient ∇𝜇, the upwards displaced element would have
a smaller density and a higher temperature than its surrounding, causing it to be dynamically
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Chapter 2 Mixing and Mass Transfer in Massive Stars

unstable. Because of the composition gradient, the density of the mass element is still higher than
its surrounding, so that the element remains dynamically stable. But the composition gradient
does not change the difference in temperature! In contrast to the first case, the upwards displaced
element loses energy by radiation to its surrounding. The mass element gets cooler, its density
increases, and the downward buoyancy force grows. That causes a gaining of additional momentum.
The amplitude of the oscillation around its original position rises. In this case, one speaks of
vibrational instability or over-stability via radiative amplification.

Semiconvection is considered as a slow mixing process due to vibrational instability. Although there
are approaches to parametrize the growth rate of the amplitude of the oscillating gas element (cf. sec.
3.1), it is not reliably known from theory, so that the efficiency of semiconvection is a free parameter in
stellar evolution codes. Due to its nature as vibrational instability, semiconvection only occurs in the
presence of a composition gradient. In particular for the models in this thesis: Within the regions of the
composition gradient that the contracting convective core leaves behind (as described in sec. 2.1). Since
the oscillating gas elements lead to a chemical mixing when they dissolve, the composition gradient
can be smoothed via semiconvective mixing, depending on its efficiency, possibly causing dynamical
instabilities, so that new convection zones emerge.

2.4 Classification of Close Binary Systems

This section gives an overview of several basic terms and the different classifications of a binary. It is
based on Boer, 2008.

A binary star system contains two components, called the primary (with the mass 𝑀1) and the
secondary (with the mass 𝑀2, where the primary (secondary) is the initially more (less) massive star.
Whenever a component releases mass to its component, it is called the donor. When a component gains
mass from its companion, it is called the accretor.

The gravitational potential from a binary can be extracted from fig. 2.1. Especially considering the
Roche lobe, the three-dimensional equipotential surface going through the inner Lagrangian point 𝐿1, is
most important for the overall fate of a contact binary. Depending on the rate of Roche lobe overflow,
three distinct configurations are distinguished (cf. fig. 2.2): Systems where both stellar components
remain within their Roche lobes are called a detached systems. When only one component overflows its
Roche lobe, they are in a semi-detached configuration. When both stars fill their Roche lobes, they are
called contact binaries. An over-contact configuration is usually understood as both stars overflowing
their Roche lobes simultaneously. In this thesis, contact and over-contact configurations are handled
synonymously.

7
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Figure 2.1: Equatorial cross section of equipotential surfaces in a binary with mass ratio 𝑞 = 0.5, together with a
three-dimensional representation of the potential. Equipotential lines going through the inner Lagrangian point 𝐿1
indicate the 2-D representation of the Roche lobe. Credits: Postnov and Yungelson, 2014.

Figure 2.2: Possible binary configurations in terms of Roche lobe overflows. Φ is the gravitational potential along
the line joining both components, parametrized by 𝑥. Credits: Marchant, 2018

8



Chapter 2 Mixing and Mass Transfer in Massive Stars

2.5 Binary Mass Transfer

This section is based on Postnov and Yungelson, 2014, if not stated differently.

During the main sequence, the mean molecular weight 𝜇 increases due to hydrogen burning. Because
the radius

𝑅 ∝ 𝜇
0.67

𝑀
0.81 (2.5)

(for hydrogen burning dominated by the CNO cycle (Pols, 2009)) is proportional to 𝜇, stellar radii do
increase during main sequence. The radius of the Roche lobe (corresponding to eq. 3.1) of a binary
component with mass 𝑀1 can be estimated to

𝑅L1
𝑎

= 0.38 + 0.2 log
(
𝑀1
𝑀2

)
, (2.6)

where 𝑎 is the orbital separation between the components (Boer, 2008). Consequently, binaries with
smaller orbital separations have smaller respective Roche lobe radii, so that mass transfer via Roche lobe
overflow may happen.

When only one component overflows its Roche lobe, mass is transferred to that rate that the donor
remains inside its Roche lobe. When both stars are in contact, mass is transferred to that amount so that
both stars overflow their Roche lobe to the same degree.

Mass transfer from the less massive to the more massive star is fundamentally different: The initially
more massive star in a binary evolves faster than the secondary. Typically, it will fill its Roche lobe
first. When the more massive star transfers mass to the less massive star, the orbital separation will
decrease due to considerations of conservation of angular momentum. That also decreases the Roche
lobe radius (cf. eq. 2.6), causing even more mass to be transferred. That potentially leads to an instable
case, where mass is transferred on a thermal timescale2. When the less massive star transfers mass to the
more massive star, the orbital separation will rise, leading to an increase in the Roche lobe radius. There
is no “feedback loop” in mass transfer, and the mass transfer rate is only up to the nuclear expansion
of the donor, so that mass is transferred on a nuclear timescale. This type of mass transfer leads to a
semi-detached configuration.

2 The radius of the donor reacts to mass loss on a thermal timescale
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CHAPTER 3

Methods

In this thesis, the stellar evolution code MESA (Modules for Experiments in Stellar Astrophysics) is
employed – specifically, version 10398. Although it is not the most recent one, this version is chosen to
ensure comparability with the results presented in Menon et al., 20211. MESA simulates stellar evolution
models in one dimension, basically by solving differential equations of stellar structure as described
in the MESA instruments papers (Paxton, Bildsten et al., 2011; Paxton, 2013; Paxton, Marchant et al.,
2015; Paxton, Schwab et al., 2018; Paxton, Smolec et al., 2019; Jermyn et al., 2023).

As the parameter setup in the starting point model is adopted (see section 3.3), stellar physics in
the models for this thesis are exactly the same as described in section 2.1 of Menon et al., 2021. The
models only differ in the two mixing processes overshooting and semiconvection. Sections 3.1 & 3.2 are
intended to summarize the main features of the physical assumptions made in Menon et al., 2021 that are
relevant for this thesis. Section 3.3 will declare the initialization of the models for this thesis. The rest of
this chapter (sections 3.4 - 3.6) gives an account of the tools that are used to evaluate the results.

3.1 Mixing

Overshooting and semiconvection are affected by three different mixing parameters (𝛼ov, 𝛼sc and 𝐵). The
way MESA uses these parameters, and therefore how it treats the two mixing processes, is summarized
below.

In terms of mixing processes, a hydrodynamical simulation in 3 dimensions is possible but computation-
intensive. Instead, MESA implements mixing types like convection, overshooting and semiconvection
as one-dimensional diffusive processes (for example, cf. section 5.2 in Paxton, Bildsten et al., 2011).
The efficiency of the different mixing processes is consequently described by their diffusion coefficients
according to Fick’s laws of diffusion (Kippenhahn, Weigert and Weiss, 2012).

Semiconvection is included as described in Langer, Fricke and Sugimoto, 1983. 𝛼sc – the semiconvec-
tion efficiency parameter – affects the growth rate of the amplitudes of an oscillating gas element in a
vibrational instable layer (see sec. 2.3). The semiconvective diffusion coefficient is proportional to 𝛼sc.
Thereby 𝛼sc can be handled as a dimension of efficiency for semiconvection.

Overshooting is treated using a step overshoot scheme: The overshooting region extends the distance
𝛼ov ∗ 𝐻P from the location 𝑟0 where ∇rad = ∇L into the envelope, where 𝐻P is the local pressure scale
1 The necessary files to reproduce the models calculated in this thesis are provided at
https://github.com/WhiteDwarf98/evolution_of_massive_contact_binaries.git.
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Chapter 3 Methods

height and ∇ad, ∇rad are the adiabatic and radiative temperature gradients, respectively. 𝛼ov is called the
step overshooting parameter. In contrast to 𝛼sc, it is only about the extent of the overshooting region,
but not about the efficiency within the region. Instead, the efficiency is again defined by the overshoot
mixing diffusion coefficient. This diffusion coefficient is taken from the edge of the convective zone
and extended beyond the zone, assuming it to be constant. That means the efficiency of mixing through
step overshooting at the top and the bottom of the overshooting region is the same - in contrast to an
exponential overshooting scheme, where mixing at the top is less effective than at the bottom close to the
convection zone (MESA documentation 2023).

𝐵 – commonly called the Ledoux term (e.g. Paxton, 2013) – is another parameter that is used in order
to affect overshooting. It serves as a threshold for the composition gradient, beyond which overshooting is
halted (MESA documentation 2023). This is considered to be legitimate, because a composition gradient
increases the restoring force that a gas element experiences when it overshoots the convective core (as
described in sec. 2.2). Therefore, a composition gradient can constrain the extent of the overshooting
region. 𝐵 is used besides 𝛼ov, because the step overshooting scheme is insensitive to the stabilizing effect
of a composition gradient (Marchant, 2018, section 5.1.2). Overshooting can erase the composition
gradient in places where semiconvection would otherwise have occurred (as shown in section 4.1). This
thesis is also intended to investigate in the effect of semiconvection, hence the composition gradient
cannot be ignored. In other contexts the term 𝐵 is also directly called like the local composition gradient
∇𝜇 (for example in Boer, 2008) or even 𝑓 (in Marchant, 2018). In this thesis, it is called 𝐵, having its
letter from his contribution to the Brunt–Väisälä frequency (following Paxton, 2013).

3.2 Contact Phase

The following summarizes the key attributes of the implementation of contact phases in MESA, following
the approach detailed in Marchant, 2018 and Marchant et al., 2016.

In a contact binary, stellar matter is not spatially separated. Hence, for allocating a volume to each
component, it is divided in two separate volumes by a plane through the inner Lagrange point 𝐿1 as shown
in fig. 3.1. Each volume (𝑉1 (Φ), 𝑉2 (Φ)) is associated with a volume equivalent radius (𝑅1 (Φ), 𝑅2 (Φ))
– the radius the star would have, if it were a uniform sphere with the same mass that the actual star has,
within the equipotential surface Φ. The Roche lobe radius

𝑅RL = 𝑅 (Φ (𝐿1)) (3.1)

is consequently defined as the volume equivalent radius at the potential at 𝐿1.

Spherical symmetry is a good approximation for most single stars isolated in space, as it arises from
self-gravity (Pols, 2009). Calculating the stellar evolution in one dimension is consequently assumed to
provide stellar properties (e.g. temperature, density, composition) for the star as a whole as they only
depend on the radius under the assumption of spherical symmetry. At the latest, when considering
binary stars in contact, the assumption of spherical symmetry cannot hold. Instead, the photospheres of
the binary components lie on a three-dimensional equipotential surface, as depicted in fig. 3.1. Every
component (on its own) assumed to be shellular (following the definition of Fabry et al., 2023): “[A]ll
intensive quantities, in particular the temperature, pressure and mass density, are constant along [...] a
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Figure 3.1: Meridional cross-section of two equipotential surfaces – crossing the inner (𝐿1) and the outer (𝐿2)
Lagrangian point – of an over-contact binary. The system is divided in two separate volumes by a plane crossing
𝐿1 (here: indicated as the red dashed line). Each volume is associated with a corresponding volume equivalent
radius, as described in section 3.2. The figure is taken from Marchant, 2018.

unique equipotential surface”. Hence, stellar quantities are calculated in one dimension along a volume
equivalent radius under assumption of shellularity (instead of calculating along a Euclidean radius under
assumption of spherical symmetry).

The amount of mass transferred from one component to the other basically ensures both stellar surfaces
to lie on the same equipotential surface. The quantified amount of mass transfer is described in detail by
Marchant, 2018.
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3.3 Initialization

Calculating a new grid of around 2700 binary models, as done in Menon et al., 2021, would undoubtedly
be a reliable method to see the direct influence of different mixing parameters on the population of
contact binaries at a mass ratio close to one, but the effort would be beyond the scope of this work.
Instead, only a few models with different mixing parameters are calculated, whose results are processed
in order to give a hint to the influence of the parameters to the mass-ratio distribution in an eventual grid.

Menon et al., 2021 gave two example models to illustrate the major evolutionary channels in their
grids. In this thesis, the example named “System 2” is used as a starting point. Hence, all models also
have the same initial masses (𝑀1 = 14.4 M⊙, 𝑀2 = 11.6 M⊙) and the same initial period (𝑃i = 1 d),
consistently with “System 2”. All the models are terminated analogously to Menon et al., 2021, either at
𝐿2 overflow (because they are expected to merge) or at the end of the main sequence. As a first step, the
model is recalculated to ensure that the results can be reproduced. After that, twelve detailed binary
models are calculated that are basically a recalculation with modified mixing parameters (𝛼ov, 𝛼sc and
𝐵).

In the following, the concrete choice of mixing parameters is presented (values used in Menon et al.,
2021 are in bold).

• Semiconvection efficiency parameter 𝛼sc ∈
{
10−4

, 1, 1010}
In Menon et al., 2021 a semiconvection efficiency parameter of 𝛼sc = 1.0 was included with
reference to the work of Langer, Fricke and Sugimoto, 1983 and Schootemeijer et al., 2019.
The effect of 𝛼sc on the mass ratio evolution should not only be statistically noticeable in a
grid, but rather it should be clearly visible in individual models. Therefore, two extreme cases
(𝛼sc = 10−4

, 1010) are chosen.

• Step overshooting parameter 𝛼ov ∈
{
0, 0.15, 0.335

}
In Menon et al., 2021 the step overshooting parameter of 𝛼ov= 0.335 was included with reference
to the work of Brott et al., 2011. As mentioned in section 3.1, overshooting has to be constrained
if the effect of semiconvection is taken into account, otherwise it erases the composition gradient
in areas where semiconvection would otherwise have occurred. The first approach chosen here
is to completely switch off overshooting (𝛼ov = 0). The next step is to limit the extent of the
overshooting region (𝛼ov = 0.15).

• Ledoux term 𝐵 ∈
{

– , 10−20
, 0.1

}
In Menon et al., 2021 the Ledoux term was not included, there was no threshold for the composition
gradient, beyond which overshooting is halted. Next to reducing 𝛼ov, including the Ledoux term 𝐵

is a second tool for constraining overshooting. For this thesis, a very strict threshold of (𝐵 = 10−20)
and a more relaxed one (𝐵 = 0.1, following Marchant, 2018, section 5.1.2) is chosen.

The concrete combination of mixing parameters that is chosen for this thesis can be extracted from
table 3.1. One may notice that the variation in the Ledoux term 𝐵 is not evenly distributed. On the
one hand, a threshold for the composition gradient to halt overshooting is not needed, if there is no
overshooting at all (𝛼ov = 0). On the other hand, reducing 𝛼ov and 𝐵 are handled as two different tools
for constraining overshooting. Because of that, there is no variation in 𝐵 any more as soon as 𝛼ov is
constrained to 0.15.
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Table 3.1: Overview of the combination of the initial parameters for which models have been calculated. Model 7
in this table is a recalculation of the “System 2” Model in Menon et al., 2021.

# 𝛼ov 𝛼sc 𝐵

1
0

10−4

-
2 1
3 1010

4

0.335

10−45 10−20

6 0.1
7

1
-

8 10−20

9

0.1
10 1010

11
0.15

10−4

12 1
13 1010
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3.4 Mean Observable Mass Ratio

In Menon et al., 2021 a probability distribution of finding a system in given bins of mass ratio was
calculated by taking each system from their grid and determining the time it spends in contact at that
ratio bin (for details, cf. section A2 in their paper).

For the purpose of this thesis, a non-statistical single parameter per binary model is needed that makes
the effect of the chosen parameters to the observed mass ratio during contact comparable. The following
describes how this mean observable mass ratio was determined.

MESA calculates the binary evolution in discrete steps. Each step is assigned a model number. Among
others, the mass ratio 𝑞 =

𝑀2
𝑀1

is given for each step, where 𝑀1 is the initial more massive and 𝑀2 the
initial less massive star. An observer cannot distinguish between the initial less and the currently less
massive star. Therefore, one can define the observable mass ratio 𝑞obs =

𝑀2
𝑀1

, where 𝑀1 is the currently
more massive and 𝑀2 the currently less massive star, with the result that 𝑞obs ≤ 1.

Just like in Menon et al., 2021, it is defined that the system is in strict (relaxed) contact at the moment
𝑡, if the condition

𝑅 (𝑡)
𝑅RL (𝑡) ≥ 𝑐 (3.2)

holds for 𝑐 = 1 (𝑐 = 0.9) – for the primary as well as for the secondary at the same time. 𝑅 is the radius
of the star and 𝑅RL is the radius of its Roche lobe. During evolution, a binary may undergo more than
one contact period.

The mean observable mass ratio during contact

𝑞obs =

∑𝑁
𝑖=1

𝑏𝑖∫
𝑎𝑖

𝑞obs (𝑡) d𝑡∑𝑁
𝑖=1(𝑏𝑖 − 𝑎𝑖)

(3.3)

is calculated via averaging over time, where 𝑁 is the amount of contact eras, and 𝑎𝑖 (𝑏𝑖) is the moment in
time, where contact period 𝑖 starts (ends). The integral is numerically approximated via the trapezoidal
rule.

For this thesis, 𝑞obs for strict and for relaxed contact are of interest. The smaller 𝑞obs, the less likely it
will be to find the binary system during contact at a mass ratio close to 1.

3.5 Equal Mass Quotient

In order to ensure comparability to the results of Menon et al., 2021, there is a second parameter
calculated for each model, next to the mean observable mass ratio 𝑞obs (cf. section 3.4) that is intended
to give the portion of the contact phase that is spent at a mass ratio close to one. For this purpose, the
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“equal mass quotient”
𝑓 =

𝜏q

𝜏
(3.4)

is used, where 𝜏 is the total amount of time spend on contact (either strict or relaxed as defined in eq. 3.2)
and 𝜏q is the time spent at an observable mass ratio interval 0.95 ≤ 𝑞obs ≤ 1.0 during contact. As a
consequence, there are two values of 𝑓 for every model, one for strict and one for relaxed contact. This
parameter is comparable to the last bin in the 𝑞contact − 𝐻contact (Δ𝑞) - diagram in Menon et al., 2021,
figure 9.

3.6 Rejuvenation Quotient

In order to make a statement about the degree of rejuvenation of a convective core (at a time 𝑡), the
rejuvenation quotient

𝑅 =
𝑀cc,bin

𝑀cc,single
(3.5)

is used. 𝑀cc,bin is the mass of the convective core of the chosen binary component (either the primary or
the secondary star) at chosen point in time. 𝑀cc,single is the mass of the convective core of a single star
with the same total mass 𝑀tot as well as the same central hydrogen mass fraction 𝑋c.

The higher 𝑅, the more rejuvenated is the convective core of the binary component. 𝑅 = 1 means
that the extent of the convective core is the same as if it was a single star with its current total mass
undergoing core contraction due to nuclear burning. For this thesis, 𝑅 before and after an episode of
mass transfer is of interest for each star, since 𝑅 is not expected to change when mass transfer does not
occur. The following describes how exactly dividend and divisor of 𝑅 are determined.

𝑀cc,bin is the mass of the convective core at the chosen points in time inclusively overshooting.
Overshooting needs to be taken into account because the extent of the overshooting region is varied for
the different models.

An exact way of determining 𝑀cc,single would be to create a detailed single star evolution model with
MESA for each 𝑅 – with the same total mass and the same mixing parameters the corresponding model
has. Because the time required for this method goes beyond the scope of this work, a more analytical
way of estimating 𝑀cc,single is chosen: Figure 3.2 shows the mass of the convective cores at zero-age
and terminal-age main sequence for different total masses in a grid calculated by Marchant, 2018. The
following describes an example to determine 𝑀cc,single for a star with 𝑀tot = 15M⊙ and 𝑋c = 0.4. As a
first step, a pair of values (𝑀cc,ZAMS, 𝑀cc,TAMS) is extracted from fig. 3.2, here marked as red points
with labels (A, B). The central hydrogen mass fraction is assumed to start at ZAMS with 𝑋c = 0.7 and
to end at TAMS with 𝑋c = 0. As the core contracts with decreasing 𝑋c, the extracted pair of values is
assumed to define a straight line in a 𝑋c - 𝑀cc - diagram, as depicted in fig. 3.3. Consequently, 𝑀cc,single
is calculated via the line equation at the given point 𝑋c = 0.4, here resulting to 𝑀cc,single = 5 M⊙.
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Figure 3.2: Convective cores of single stars. 𝑀tot is the total mass of a single star, 𝑀cc,single is the mass of
its convective core (without overshooting) at ZAMS (zero-age main sequence) and TAMS (terminal-age main
sequence), respectively. The source of data is provided by Schürmann et al., in prep. It is based on a grid of
detailed binary models calculated by Marchant, 2018 (chapter 5) with 𝛼sc = 0.01, 𝛼ov = 0.335 and 𝐵 = 0.1. Points
marked in red are intended to show the exemplary reading of a pair of values (see text in section 3.6).

Figure 3.3: Retracting convective cores of single stars with different total masses 𝑀tot. The straight lines in this
figure are not numerically calculated with MESA but derived from pairs of values in fig. 3.2. Points A and B also
correspond to points A and B in fig. 3.2. The gray dashed lines indicate an exemplary reading of a convective core
mass 𝑀cc for a given central hydrogen mass fraction 𝑋c (see text in section 3.6).
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CHAPTER 4

Results

4.1 Example Models

A recalculation of the binary evolution model corresponding to the parameter setup of the System 2
example in Menon et al., 2021 shows that their results can be reproduced: Right panels in figure 4.1
coincide with the System 2 panels of figure 1 in their paper. The Kippenhahn diagrams in figure 4.1 show
a broad overshooting region, nearly constant in extent, consistent with the rather large step overshooting
parameter 𝛼ov = 0.335.

The binary models created for this thesis can be divided in three types, depending on their appear-
ance – more precisely, depending on the total mass evolution of their components. In the following,
three example models are used to illustrate the characteristics of the from now on so-called type A, B
and C evolution.

Systems following the type A evolution behave like “System 2” in Menon et al., 2021 that was
used as a starting point model for this thesis (see section 3.3). System A in figure 4.2(a) represents
type A evolution: One fast mass transfer episode on thermal timescale occurs after a while (here
at about 3.6 Myr), followed by a short detached phase, until mass transfer from the less massive to
the more massive component starts on the nuclear timescale due to a semi-detached configuration, fi-
nally leading to the last episode of mass transfer on a nuclear timescale, where mass ratio approaches unity.

Exactly like system 2 in figure 4.1, system A in figure 4.2(a) starts with a broad overshooting region due
to 𝛼ov= 0.335. The Secondary Kippenhahn of system A shows the effect of the additionally implemented
Ledoux term 𝐵 in this model: After the first mass transfer on thermal timescale, the overshooting region
encounters the composition gradient the convective core left behind, and is therefore constrained to
a negligibly small extent. Comparing the following mass transfer phase from the less massive to the
more massive star in the secondary Kippenhahn of system A with the corresponding phase of system
2, it turns out that overshooting in system 2 straightens the composition gradient where otherwise
semiconvection would have occurred. The Ledoux term also has an effect on the primary star: Comparing
the last mass transfer episode on nuclear timescale of system 2 (at around 𝑡 = 7 Myr) with system A
(at around 𝑡 = 6 Myr) one can see that also here the extent of the overshooting region is slightly constrained.

The effect of 𝐵 on the total evolution of system A is rather small: System A has a slightly shorter
lifespan (𝜏tot = 9.32 Myr) in comparison to system 2 (𝜏tot = 9.81 Myr) due to the less burning material
that is available in the convective core. More relevant for this thesis: The final mass ratio of system A is
further away from unity in comparison to system 3, but for example it also starts with a mass ratio closer
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Figure 4.1: A recalculation of the binary model “System 2” from Menon et al., 2021 with initial masses
𝑀1,i = 14.4, 𝑀2,i = 11.6, an initial orbital period 𝑃i = 1 d and the mixing parameters 𝛼ov = 0.335, 𝛼sc = 1. There
is no Ledoux term 𝐵 included. The left panels show Kippenhahn diagrams for the primary and the secondary,
respectively, together with the total mass evolution of the binary. The panels on the right have the same pattern as
figure 1 in Menon et al., 2021. The color scheme is reassigned here: Red background shades indicate strict contact
phases (𝑅/𝑅RL ≥ 1 for both components), gray shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both
components). Relaxed contact phases are the sum of red and gray phases. The model terminated because of L2
overflow.
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to unity at the beginning of the last mass transfer on nuclear timescale (at arount 𝑡 = 6 Myr).

Systems following type B evolution (represented by system B in figure 4.2(b)) are very similar to type A:
Exactly like type A systems, they have one mass transfer (MT) on thermal timescale, a semi-detached
phase and a final mass transfer phase on nuclear timescale. The only difference to type A: During
nuclear timescale MT (in system B starting around 𝑡 = 6.3 Myr), the mass ratio 𝑞 is not approaching,
but oscillating around unity. Comparing the Kippenhahn diagrams of system B in figure 4.2(b) with
system A in figure 4.2(a), the rather thin overshooting region sticks to the eye, agreeing with the smaller
overshooting parameter 𝛼ov = 0.15 that is implemented in this model. The effect of the Ledoux term
B is visible in the Kippenhahn diagrams analogous to system A, this time even allowing for a second
region of semiconvection (see primary Kippenhahn of system B at the beginning of contact on nuclear
timescale). Finally, system B has a smaller lifetime (𝜏tot = 9.06 Myr) than system A (𝜏tot = 9.32 Myr) as
expected from the smaller overshooting parameter providing less burning material for the core.

Models evolving like system C (figure 4.2(c)) stand out in comparison to type A and B evolution: Type
C systems avoid contact on nuclear timescale at all. Exactly like Systems A and B they start with a contact
on thermal timescale (here at around 𝑡 = 3.2 Myr), followed by a detached and a semi-detached phase.
But instead of entering a contact on nuclear timescale, they enter a second contact on thermal timescale
(here around 𝑡 = 6.7 Myr). The sequence - thermal timescale contact, detached and semi-detached
configuration - repeats at least one time before the model is terminated.

A look at the corresponding Kippenhahn diagrams of system C shows that there is no overshooting at all
(as expected from the initial mixing parameter 𝛼ov = 0). That also allows for much more semiconvection
to occur – not only at the semi-detached or contact configurations as in systems A and B, but also in the
initial detached configuration: The primary has small regions of semiconvection as the convective core
retracts (starting from 𝑡 = 1 Myr).
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Type A

(a) “System A”
model 3 – 𝛼ov = 0.335

Type B

(b) “System B”
model 7 – 𝛼ov = 0.15

Type C

(c) “System C”
model 11 – 𝛼ov = 0

Figure 4.2: Three selected binary evolution models representing their type of total mass evolution of their components as described in section 4.1 with
𝛼sc= 1 and 𝐵 = 0.1 (System C has no 𝐵 implemented as there is no overshooting). Every column features Kippenhahn diagrams for the primary and the
secondary, respectively, together with the total mass evolution of the binary components. The hatching shows regions of different mixing processes (as
indicated) and blue shades point out nuclear energy generation. Model numbers in each caption correspond to table 4.1.
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4.2 System Properties

In all models, there are certain recurring evolutionary phases: contacts on thermal and nuclear timescale,
as well as semi-detached phases. In the following, the example models already introduced in section
4.1 are used to examine these phases in more detail. For this purpose, figure 4.3 deals with the system
properties of the example models A, B and C, following the style of Menon et al., 2021, Figure 1.

Mass transfer on thermal timescale occurs as the first episode of mass transfer for every model in this
thesis (system A: around 3.5 Myr, system B: 3.3 Myr, system C: 3.2 Myr). Type C models do have more
than one thermal timescale contact phases, in system C there are two more of them (around 6.7 Myr
and 9.1 Myr). Both stellar components overflow their respective Roche lobes ( 𝑅

𝑅RL
≥ 1). Thus, thermal

timescale mass transfer occurs during strict contact (corresponding to the narrow red shades in fig. 4.3).
The more massive star loses its mass 𝑀 and shrinks in radius 𝑅 rapidly, while the lower mass star does
the opposite. A characteristic feature of the thermal timescale mass transfer is the drop in orbital period
𝑃: 𝑃 reaches a local minimum when mass ratio q has reached unity (𝑞 = 1), and recovers again as soon
as 𝑞 inverses, as expected from considerations of conservation of total angular momentum (cf. sec. 2.5).
The orbital separation 𝑎 behaves similar to the orbital period (Kepler’s third law 𝑃

2 ∝ 𝑎
3). When 𝑃

recovers, the orbital separation rises again, both stars finally detach and mass transfer is stopped.

Mass transfer from the less massive to the more massive star does always happen on a nuclear timescale
in the calculated models, as expected from theory (sec. 2.5). Thermal timescale mass transfer and the
subsequent detached configuration is always followed by this kind of mass transfer, as soon as the now
less massive star fills its Roche lobe again (system A: 4.2 Myr, system B: 4.0 Myr, system C: 4.0 Myr and
7.3 Myr). The system stays in a detached configuration ( 𝑅

𝑅RL
≥ 1 only for the donor) as orbital separation

(and period) rises. The semi-detached configuration ends, when the currently more massive star fills its
Roche lobe - leading to a next contact phase (either on thermal or nuclear timescale).

Systems following evolution type A and B exhibit a mass transfer phase on nuclear timescale during
contact at the end of the simulations (system A: 5.8 Myr, system B: 6.2 Myr). They enter this phase
by leaving the semi-detached configuration (when the more massive acceptor fills its Roche lobe),
exactly like system C, when it enters a second contact on thermal timescale (around 6.8 Myr). The
only difference is that systems A and B remain in contact, system C breaks contact after approximately
0.2 Myr. The cause that determines whether stars stay in contact on the nuclear timescale or break it off
by detaching is unexplored yet and requires further research.

A closer look at the evolution of mass transfer rates ¤𝑀TR during contact on nuclear timescale for
different types of evolution may suggest a connection: The mass transfer rate during contact of system B
(fig. 4.3(b)) shows two “hills” indicating an inversion of mass transfer that is the reason for the “oscillation
in total mass” that is characteristic for type B. The first hill and the beginning of a second hill is also
visible during contact on nuclear timescale in system A (fig. 4.3(a)), with the only difference that the
first hill is more extended in time and the initial mass transfer rate at contact (around 6 Myr) is not high
enough to inverse the mass ratio. The comparison of all three systems shows that the extent of the
overshooting region can have a considerable impact on the period of contact at nuclear timescale: It
can affect the frequency and the amplitude of mass ratio oscillation during contact, or even whether the
system avoids the contact period at all.
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(a) “System A”
model 3 – 𝛼ov = 0.335

Type B

(b) “System B”
model 7 – 𝛼ov = 0.15

Type C

(c) “System C”
model 11 – 𝛼ov = 0

Figure 4.3: Detailed system properties of the three example models depicted in figure 4.2, following the style of Menon et al., 2021, Figure 1. Again, 𝛼sc= 1
and 𝐵 = 0.1 (System C has no 𝐵 implemented as there is no overshooting). Model numbers in each caption correspond to table 4.1. The first row features
the period (left axis) and the mass ratio evolution (right axis). The other panels exhibit the total radius 𝑅, the relative Roche lobe overflow 𝑅/𝑅RL, the total
mass 𝑀 of the components and the rate of mass transfer ¤𝑀TR. Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components),
gray shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components).
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4.3 Impact of Semiconvection

This section is intended to give an overview of the impact of semiconvection efficiency to the overall
mass ratio evolution for different extents of the overshooting region (𝛼ov = 0.335 in figure 4.4, 𝛼ov = 0.15
in figure 4.5 and 𝛼ov = 0 in figure 4.6). Each figure collates three different efficiencies of semiconvection
(𝛼sc = 10−4

, 1, 1010).

Beginning with 𝛼ov = 0.335, it stands out that semiconvection exclusively plays a role during the semi-
detached and the preceded detached phase in the secondary star (see secondary Kippenhahn diagrams in
fig. 4.4 between 3.8 Myr ≲ 𝑡 ≲ 6 Myr). Consequently, modifying the efficiency of semiconvection via
𝛼sc foremost has an impact on this stadium: The lifetime of the semi-detached phase increases as 𝛼sc
increases (until ≈ 5.8 Myr in fig. 4.4(a), until ≈ 6 Myr in fig. 4.4(b) and until ≈ 6.4 Myr in fig. 4.4(c)).
The mass ratio at the end of semi-detached configuration rises with the lifetime of this phase (and also
with 𝛼sc) as mass transfer rate stays constant during semi-detached configuration (see constant slope of
component mass evolution during the semi-detached phases in the second row of fig. 4.4).1

The lifetime of the detached phase is ruled by the radius evolution of the acceptor (here the primary)
as described in section 4.2: The phase ends as soon as the acceptor fills its Roche lobe – leading to a
next contact phase. Comparing the secondary Kippenhahn panels in figure 4.4 reveals the reason for
a different secondary radius evolution: A minor efficiency of semiconvection leads to a well-defined
semiconvective layer that operates as separation between the convective core and another convective
layer that grows in mass as the secondary gains mass during the semi-detached configuration (red layer
in the secondary Kippenhahn of fig. 4.4(a)). This separation effectively prevents the enrichment of the
core with the burning material hydrogen, and therefore leads to a nuclear evolution that is unaffected by
the mass gain. With an increased efficiency of semiconvection (𝛼sc = 1.0), the efficiency is high enough
to create some convective zones in the otherwise semiconvective layer as the composition gradient
is smoothed (cf. fig. 4.4(b) and sec. 2.3 for theory). Efficiency is expected to be high enough to
enrich the convective core with hydrogen. The core is rejuvenated as it has more burning material, the
radius increases slower, and it takes longer to fill the secondary Roche lobe. With 𝛼sc = 1010, there is
no direct layer of semiconvection visible in the secondary Kippenhahn diagram of fig. 4.4(c). Here,
semiconvection efficiency is high enough to immediately smooth the composition gradient that would
otherwise constrain the overshooting region (via 𝐵), the convective core effectively grows after mass
transfer on thermal timescale (around 𝑡 = 3.8 Myr), joining with a broad, unconstrained overshooting
region – leading to a strong rejuvenation and the most extended lifespan of the semi-detached configuration.

Proceeding to figure 4.5 with 𝛼ov = 0.15, it stands out that the first contact on thermal timescale
happens earlier (around 𝑡 ≈ 3.4 Myr) than with 𝛼ov = 0.335 (around 𝑡 ≈ 3.6 Myr) as expected from the
smaller extent of the overshooting region supplying less burning material to the core and leading to
an earlier filling of the primary Roche lobe. The semi-detached phase is affected by the efficiency of
semiconvection analogously to the case of 𝛼ov = 0.335: The lifespan of the semi-detached era lasts
longer with increasing 𝛼sc and leads to a higher mass ratio at the end of the semi-detached configuration.

This time, efficiency of semiconvection has a considerable impact on the mass transfer rate during

1 The mass transfer rate is constant, since it is up to the nuclear evolution of the Roche lobe filling donor (here the primary).
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contact on nuclear timescale: In figure 4.5(a), a minor 𝛼sc leads to preventing a type B evolution.

In the case of no overshooting (fig. 4.6), the efficiency of semiconvection has a strong impact on the
total lifespan2 as a higher semiconvection efficiency enriches the core with hydrogen more effectively.
Without a present overshooting region, semiconvection occurs throughout the whole evolution, not
only constrained to the semi-detached configurations. This is most conspicuous for 𝛼sc = 10−4 (cf.
fig. 4.6(a)): The semiconvective layer constrains the cores of both components effectively so that they
retract almost independently of mass transfer, leading to a very short lifespan in comparison to the cases
of figures 4.6(b) & 4.6(c) (rejuvenation is prevented, see also section 4.4). Furthermore, 𝛼sc affects
the amount of contacts on thermal timescale: models in fig. 4.6(a) and 4.6(b) undergo three extended
contacts on thermal timescale3, while the model in fig. 4.6(c) undergoes four of them.

Comprising, semiconvection preferably affects the lifetime of semi-detached phases (for 𝛼ov = 0.335
semiconvection exclusively occurs during semi-detached phases, for 𝛼ov = 0 there is no contact on
nuclear timescale). In one case, it additionally affects the contact on nuclear timescale for a constrained
overshooting 𝛼ov = 0.15 (𝛼ov = 0.15) by changing the evolution type. Constraining overshooting leads
to a higher impact of semiconvection – on the total lifetime as well as on the overall total mass evolution
(eg. amounts of contacts on thermal timescale).

2 For the other extents of the overshooting region (𝛼ov = 10−4
, 1), a higher 𝛼sc means a slightly higher lifespan, too, but only

less than 0.5 Myr (compare figures 4.4 & 4.5). For 𝛼ov = 0, the range of 𝛼scenhances the lifespan up to ≈ 3 Myr!
3 Model number 10 in fig. 4.6(a) ends with an extremely short period of contact. Therefore, it is listed in table 4.1 with
𝑁strict = 4.
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(a) 𝛼sc = 10−4

model number 1
(b) 𝛼sc = 1.0

model number 3
(c) 𝛼sc = 1010

model number 6

Figure 4.4: Three selected binary evolution models showing the impact of semiconvection for a constant 𝛼ov = 0.335 and 𝐵 = 0.1. Every column features
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of the binary components. The hatching shows
regions of different mixing processes (as indicated) and blue shades point out nuclear energy generation. Model numbers in each caption correspond to
table 4.1.
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(a) 𝛼sc = 10−4

model number 2
(b) 𝛼sc = 1.0

model number 7
(c) 𝛼sc = 1010

model number 8

Figure 4.5: Three selected binary evolution models showing the impact of semiconvection for a constant 𝛼ov = 0.15 and 𝐵 = 0.1. Every column features
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of the binary components. The hatching shows
regions of different mixing processes (as indicated) and blue shades point out nuclear energy generation. Model numbers in each caption correspond to
table 4.1.
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(a) 𝛼sc = 10−4

model number 10
(b) 𝛼sc = 1.0

model number 11
(c) 𝛼sc = 1010

model number 13

Figure 4.6: Three selected binary evolution models showing the impact of semiconvection for a constant 𝛼ov = 0 (consequently, there is no 𝐵 included).
Every column features Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of the binary components.
The hatching shows regions of different mixing processes (as indicated) and blue shades point out nuclear energy generation. Model numbers in each
caption correspond to table 4.1.
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4.4 Rejuvenation

This section investigates the connection between rejuvenation and the observable mass ratio, as assuming
a binary with mass ratio 𝑞 = 1 and completely rejuvenated components, both stars are expected
to evolve equally, especially their radii would increase simultaneously leading to a stagnation in
mass exchange. The following can be put forward as a hypothesis: The more rejuvenation occurs
in a binary evolution model, the more probable the binary system will be found at a mass ratio close to one.

The system 2 model in Menon et al., 2021 features instantaneous rejuvenation during mass transfer.
Figure 4.7 – left panel, second row – shows the first mass transfer episode for the secondary as an
example: The convective core expands (from 5.2 M⊙ to 7.2 M⊙), it is enriched with the less processed
material above the core, and the central hydrogen mass fraction rises (from around 0.672 to 0.688). Even
the small composition gradient (visualized by the slope of 𝑋H between 5 M⊙ ≤ 𝑚 ≤ 6 M⊙) that was
left behind by the contracting convective core is erased after the mass transfer. The star is said to be
rejuvenated at this point, because the convective core has gained more burning material. The table for
the secondary in fig. 4.7 (left panel) quantizes the rejuvenation via the rejuvenation quotients before
(𝑅1A = 1.26) and after (𝑅1B = 1.25) mass transfer. 𝑅 does not drop noticeably and 𝑅 ≥ 1. The star is
not only partially but also completely rejuvenated: The convective core has the same extent as if it was a
single star with the same total mass and central hydrogen mass fraction (𝑅 > 1 at this point, because
𝑀cc,single does not account for overshooting, cf. section 3.6). In addition to that, the rejuvenation can be
visually affirmed by the Kippenhahn diagrams in fig. 4.1: The extent of the convective core (inclusively
the overshooting region) grows and shrinks going along the change in total mass of the star.

In contrast to the grid in Menon et al., 2021, the models calculated in this thesis often show a reduced
or even an avoided rejuvenation. The most extreme case of an avoided rejuvenation is given in figure 4.7
(right panel). The hydrogen profiles around the first episode of mass transfer (second row) serves again
as an example for the rejuvenation processes, in a direct comparison to the left panel: The extent of the
convective core (around 3 M⊙) stays the same before and after mass transfer. No additional hydrogen is
mixed into the core, the hydrogen mass fraction 𝑋H even decreases (from around 0.649 to 0.644), as
expected due to nuclear burning. Concerning the quantization of rejuvenation (tables in the third row), it
stands out that the rejuvenation quotient 𝑅 is almost monotonically decreasing in time, indicating an
avoided rejuvenation during the whole binary evolution. This even becomes impressively clear in the
light of the Kippenhahn plots in fig. 4.8 (left panel), where the convective cores of both components
retract almost independently of mass transfer. Furthermore, the Kippenhahn diagrams show the cause for
the avoided rejuvenation for this model: Layers with a composition gradient (left behind by the retracting
core) act as an efficient boundary constraining the extent of the convective core. The small efficiency
of semiconvection (𝛼sc = 10−4), as well as the absence of overshooting, lead to a preservation of the
composition gradients.

Instead of comparing hydrogen profiles for each model (as done before for two extreme cases of
(no) rejuvenation), the following is intended to give an overall picture of rejuvenation in all calculated
models by evaluating only the set of rejuvenation quotients 𝑅 (for each binary evolution model, there
is a set of calculated 𝑅 analogously to the tables in fig. 4.7). Figure 4.9 shows all determined values
for 𝑅 and their assigned observable mass ratios 𝑞obs the system has at that point in time. Evolutionary
lines in this diagram collectively start around 𝑞obs = 0.8 (marked with the letter 𝐴 for each highlighted
model), but with different degrees of rejuvenation. This indicates the beginning of the first episode of

29



Chapter 4 Results

Primary
# A B
1 1.22 1.24
2 1.31 1.35
3 1.35 1.26

Secondary
# A B
1 1.26 1.25
2 1.22 1.20
3 1.20 1.29

Primary
# A B
1 0.71 0.78
2 0.74 0.74
3 0.73 0.38
4 0.38 0.36
5 0.36 0.58
6 0.48 0.47
7 0.46 0.45

Secondary
# A B
1 0.71 0.5
2 0.49 0.45
3 0.45 0.76
4 0.70 0.62
5 0.62 0.25
6 0.25 0.25
7 0.04 0.00

Figure 4.7: Two extrema of models with rejuvenation (left panel) and without rejuvenation (right panel). The first
row gives the mass evolution of the binary components. The points in time marked in blue are chosen so that they
frame episodes of high mass transfer ( ¤𝑀TR ≥ 10−7 M⊙/yr). The second row shows the hydrogen profiles of the
secondary components before (1A) and after (1B) the first episode of mass transfer on thermal timescale. The
tables give the rejuvenation quotient (see section 3.6) for each associated point in time. The points in time for the
primary are determined analogously to those of the secondary star. The left panel is based on a recalculation of the
system 2 model in Menon et al., 2021 with 𝛼ov = 0.335, 𝛼sc = 1 and no 𝐵 (model 5 in table 4.1). The right panel
corresponds to model 10 with 𝛼ov = 0 and 𝛼sc = 10−4.
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Figure 4.8: An extreme case of a model without rejuvenation. This binary is listed in table 4.1 as model 11 (giving
further global system properties and the mixing parameters for this model: 𝛼ov = 0, 𝛼sc = 10−4, no Ledoux term
𝐵). The left panels show Kippenhahn diagrams for the primary and the secondary, respectively, together with the
total mass evolution of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021.
The color scheme is reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both
components), gray shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). Relaxed contact
phases are the sum of red and gray phases. The model terminated because of secondary hydrogen depletion.
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Figure 4.9: Relation between rejuvenation quotient 𝑅 and observable mass ratio 𝑞obs (during relaxed contact).
For each model, there is a set of rejuvenation quotients 𝑅 analogous to the tables in fig. 4.7. Each 𝑅 is assigned
the observable mass ratio 𝑞obs the system has at that point in time. The model numbers correspond to table 4.1.
Highlighted models indicate typical pathways in this diagram. Points labeled with 𝐴 indicate the first calculated 𝑅

at the beginning of the binary evolution, Ω indicates the last one at the end. For not highlighted models, quotients
for the primary and the secondary are pooled.

mass transfer on thermal timescale, where mass ratio is inverted. Every model in this thesis has this
episode in common. Only models that tend to evolve to minuscule 𝑅, and therefore efficiently avoid
rejuvenation during episodes of mass transfer (like evolution model 10 in this figure), reach the smallest
observable mass ratios. In contrast to that, models evolving to a mass ratio close to 𝑞obs = 1 (between
0.9 ≤ 𝑞obs ≤ 1.0, models 5 and 7, for instance) tend to have strongly rejuvenated cores (𝑅 > 0.85)
in the end of their evolution. An avoided rejuvenation (small 𝑅) does not occur in this range of 𝑞.
The points in this interval are slightly separated from the rest. They all have their origin in nuclear
timescale contact, where mass ratio tends to be close to one (see section 4.2). Models with more avoided
rejuvenation (smaller 𝑅) throughout the evolution often evolve preferably to smaller observable mass
ratios (cf. highlighted models in fig. 4.9). But still, a strict correlation like 𝑅 ∝ 𝑞obs between rejuvenation
and the current observable mass ratio cannot be derived from this figure. On the contrary, model 13 is
evolving towards small mass ratios without any considerable growing delay in rejuvenation.

Figure 4.10 gives the rejuvenation quotients sorted by mean observable mass ratio 𝑞obs for their
corresponding evolution models. As a consequence, it provides a range of rejuvenation occurring during
the evolution for every binary evolution model.4 If rejuvenation was a key phenomenon leading towards
𝑞 = 1 as assumed as hypothesis, this figure would have shown a clear proportionality: The larger 𝑅 the
larger 𝑞obs. This is not the case. On the contrary, model 13 has the most extreme 𝑞obs, even though
model 2 (with a 𝑞obs close to one) occasionally avoids rejuvenation more effectively (the range goes to

4 Model 13 has a smaller mean observable mass ratio 𝑞obs than model 10 although model 10 evolves to smaller 𝑞obs in fig.
4.9. The reason for this is that model 10 leaves relaxed contact after the third strict contact on thermal timescale (cf. fig. 4.8).
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Figure 4.10: Relation between the rejuvenation quotients R (see section 3.6) and mean observable mass ratio
𝑞obs (see section 3.4) during relaxed contact for the whole evolution model. For each model, there is a set of
rejuvenation quotients analogous to the tables in fig. 4.7. The labelled numbers indicate the model numbers
corresponding to table 4.1. The colors point out the step overshooting parameter 𝛼ov (cf. section 3.1 ff.) following
the scheme of fig. 4.11 and table 4.1. Models 4, 9 and 11 are omitted as they are similar to neighboring models (cf.
section 4.5).

smaller 𝑅 than in model 13). But considering the colors indicating the extent of the overshooting region
shows that 𝑞obs is not independent of rejuvenation: Models with a larger overshooting region (marked in
blue, for example) tend to rejuvenate more effectively (higher 𝑅) and have 𝑞obs closer to one, whereas
models with a smaller overshooting region (marked in yellow, for example) tend to avoid rejuvenation
more effectively and have 𝑞obs far away from one – coinciding with the initial hypothesis. Fixing the
extent of the overshooting region, it stands out that rejuvenation has the opposite effect: Models with
more rejuvenation (e.g. model 13) have smaller 𝑞obs than models with an avoided rejuvenation (e.g.
model 10). Models with the same color (the same 𝛼ov) only differ in their efficiency of semiconvection.
Consulting figure 4.11, it turns out that more efficient rejuvenation within a fixed 𝛼ov is caused by a
higher efficiency of semiconvection. Figure 4.10 therefore shows an overall picture: Rejuvenation driven
by a larger extent of the overshooting region leads to 𝑞obs closer to one, whereas rejuvenation driven by a
higher efficiency of semiconvection shifts 𝑞obs to smaller values.
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4.5 Mass Ratio Evolution

This section is intended to give an overview of all calculated binary evolution models, as well as of
the impact of the initial parameters on the mean observable mass ratio. Table 4.1 lists all calculated
evolution models (one recalculation of System 2 in Menon et al., 2021 and twelve modifications).

Depending on the results in table 4.1, a few models stand out to be similar to their neighbors. Therefore,
they stay unregarded in the following sections: First, the combination 𝛼ov = 0.335 and 𝐵 = 10−20 is
very similar to 𝛼ov = 0 as arising from the pairs of models (11, 12) and (9, 10). Those with 𝛼ov = 0.335
live slightly longer, but that has no effect on the overall evolution, especially the mean observable mass
ratio 𝑞obs is practically the same. This behavior does not surprise, since 𝐵 = 10−20 strongly constraints
the overshooting region as soon as there is a touch of a composition gradient. Moreover, models 5
(system 2 model in Menon et al., 2021) and 4 (same as 5, only with reduced 𝛼sc) are absolutely identical.
Again, this shows that semiconvection is immaterial in the starting point model 5, as already shown in
the Kippenhahn diagrams in fig. 4.1 (section 4.1 shows that overshooting in system 2 straightens the
composition gradient where otherwise semiconvection would have occurred).

In consequence of the sorting order, the table is framed by evolution models 1 (with 𝑞obs closest to one)
and 13 (with the smallest 𝑞obs). The evolution of model 1 is depicted in 4.4(a). It stands out due to its
fast evolution towards 𝑞obs = 1 during its contact on nuclear timescale that is typical for type A evolution
(for the types, cf. section 4.1). Model 13 is depicted in fig. 4.6(c). It is unique due to its extended total
lifetime (𝜏tot = 11.46 Myr), its continuous time spending on relaxed contact (𝜏relaxed = 9.46 Myr) and its
consequent avoidance of a strict contact on nuclear timescale that is typical for type C evolution (cf.
figures A.1 and A.13).

The strongest effect to the mean observable mass ratio has the evolution type: type A models (models
1 - 6 in table 4.1) generally have a higher 𝑞obs than type B (models 7 & 8), type B models generally
have a higher 𝑞obs than type C (models 9 - 13). Especially type C models excel in their extreme
mass ratios, as models of this type avoid contact on nuclear timescale at all. Consequently, the widest
“gap” in 𝑞obs is between the last type B model 8 (with 𝑞obs = 0.830) and the first type C model (with
𝑞obs = 0.713). Moreover, type C models spend a negligible amount of their total lifespan in an interval
0.95 ≤ 𝑞obs ≤ 1.00 ( 𝑓relaxed ≤ 0.01).

Concerning the effect of the initial parameters on the evolution type, it appears that the type is mainly
affected by the extent of the overshooting region: Type C systems practically feature no overshooting
at all (𝛼ov = 0 or 𝐵 = 10−20), type B systems have a constrained overshooting region (𝛼ov = 0.15) and
type A usually has an 𝛼ov = 0.335. Only evolution model 2 falls out of alignment: It features a type A
evolution, although its overshooting parameter is 𝛼ov= 0.15, showing that the extent of the overshooting
region driven by the step overshooting parameter 𝛼ov cannot be the only key phenomenon determining
the type of evolution.

Figure 4.11 illustrates the impact of the mixing parameters to the mean observable mass ratio:
Constraining the extent of the overshooting region (reducing 𝛼ov) as well as enhancing efficiency of
semiconvection (larger 𝛼sc) leads to a smaller probability to find a binary system at a mass ratio close to
one (smaller 𝑞obs). Additionally, the more overshooting is constrained, the more 𝛼sc affects the mean
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observable mass ratio (in fig. 4.11, models marked in yellow show a wider range of 𝑞obs than models
marked in blue). 5

Figure 4.11: Effect of the mixing parameters 𝛼ov and 𝛼sc (see section 3.1 ff.) on the mean observable mass
ratio 𝑞obs (see section 3.4) during relaxed contact (𝑅/𝑅RL ≥ 0.9 for both components). Binary model numbers
correspond to table 4.1. Redundant models are omitted as described in section 4.5.

5 Model 7 still has a slightly higher mean observable mass ratio than model 8. Concerning the total mass evolution of the
components in fig. 4.5(b) and fig. 4.5(c), this may surprise, because the amplitude of the type B mass oscillation during
contact on nuclear timescale decreases in model 8 (in other words: the final mass ratio 𝑞f of model 8 in table 4.1 is lower than
model 7). A closer look at the total mass evolution of both models shows that the contribution of the decreasing amplitude in
model 8 to 𝑞obs is equalized by the smaller mass transfer rate at the beginning of contact on nuclear timescale.
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Table 4.1: Overview of the calculated models, including the step overshooting parameter (𝛼ov), the efficiency parameter of semiconvection (𝛼sc), and the
Ledoux term (𝐵) - the threshold in the composition gradient from which the overshooting region is terminated. No value for 𝐵 means that there is no
threshold included in the simulation. The initial mass ratio for every model is 𝑞i = 0.8. The table provides the type (see section 4.1), the final mass ratio
(𝑞f) for every simulation, as well as the net simulation lifespan 𝜏tot in Myr. 𝑁strict is the amount of strict contact eras. The following values are listed for
strict and relaxed contact, repsectively: The duration of contact 𝜏 in Myr, 𝑞min and 𝑞max (the minimum and maximum mass ratio during contact) as well
as 𝑓 (the portion of the contact phase spent at a mass ratio close to one, cf. section 3.5) and 𝑞obs (the mean observable mass ratio during contact, cf. section
3.4). The table is sorted by 𝑞obs for relaxed contact (three decimal places for 𝑞obsare needed here to get a clear order). Model 6 (shaded in gray) is a
recalculation of “System 2” in Menon et al., 2021. Other colors indicate models with the same combination of 𝛼ov and 𝐵, redundant models are not colored
(cf. text in section 4.5). Bold model numbers were used as examples for representing their types in section 4.1.

initial parameters strict contact relaxed contact
# 𝛼ov 𝛼sc 𝐵 type 𝑞f 𝜏tot 𝜏 𝑁strict 𝑞max 𝑞min 𝑓 𝑞obs 𝜏 𝑞max 𝑞min 𝑓 𝑞obs
1 0.335 10−4 0.1 A 1.01 9.23 3.88 2 1.36 0.86 0.63 0.937 7.05 1.36 0.81 0.34 0.873
2 0.15 10−4 0.1 A 1.01 8.72 3.52 2 1.40 0.85 0.75 0.951 6.66 1.40 0.81 0.40 0.872
3 0.335 1 0.1 A 1.02 9.32 3.63 2 1.39 0.86 0.63 0.935 7.14 1.39 0.81 0.32 0.863
4 0.335 10−4 - A 1.00 9.81 3.37 2 1.46 0.85 0.66 0.941 7.63 1.46 0.81 0.29 0.847
5 0.335 1 - A 1.00 9.81 3.37 2 1.46 0.85 0.66 0.941 7.63 1.46 0.81 0.29 0.847
6 0.335 1010 0.1 A 1.03 9.50 3.46 2 1.42 0.86 0.39 0.916 7.32 1.42 0.81 0.19 0.845
7 0.15 1 0.1 B 1.05 9.06 2.88 2 1.49 0.85 0.51 0.934 7.00 1.49 0.81 0.21 0.834
8 0.15 1010 0.1 B 1.03 9.14 2.81 2 1.50 0.85 0.54 0.937 7.08 1.50 0.81 0.21 0.830
9 0.335 10−4 10−20 C 2.35 8.79 0.48 4 2.35 0.58 0.06 0.734 5.03 2.35 0.58 0.01 0.713
10 0 10−4 - C 2.36 8.78 0.45 4 2.36 0.58 0.04 0.733 5.04 2.36 0.58 0.00 0.712
11 0 1 - C 0.89 9.21 0.47 3 1.58 0.55 0.04 0.683 7.31 1.58 0.55 0.00 0.693
12 0.335 1 10−20 C 0.83 9.30 0.46 3 1.59 0.55 0.04 0.679 7.39 1.59 0.55 0.00 0.691
13 0 1010 - C 1.68 11.46 0.69 4 2.07 0.56 0.03 0.657 9.46 2.07 0.56 0.00 0.652
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Discussion

It is worth to consider the mixing parameters investigated in this thesis (cf. sec. 3.3) as arbitrary choices.
Although 𝛼sc was estimated to be a factor of order unity in Langer, Fricke and Sugimoto, 1983 and
𝛼ov was calibrated to 𝛼ov = 0.335 in Brott et al., 2011 (coinciding with the mass range for the models
in this thesis), the selection of initial parameters that reflects physical reality is not reliably known
(Pols, 2009). Hence, choosing extreme cases for the mixing parameters were only intended to show the
effect of rejuvenation on the mean observable mass ratio, without claiming physical truth. The Ledoux
term, commonly set to 𝐵 = 0.1, even was an arbitrary choice in Marchant, 2018 (chapter 5), as the
stabilizing effect to overshooting of the gradient in mean molecular weight is not certain. Marchant,
2018 showed for 𝐵 = 0.2 and 𝐵 = 0.05 that the choice of this parameter had no significant impact on
their models. In contrast, models 9 and 12 in this thesis (cf. table 4.1) show that a very strict value for 𝐵
can effectively constrain the overshooting region, change the type of evolution and significantly alter the
mean observable mass ratio 𝑞obs.

1

Also, the methods used for the evaluation of certainly succumb to uncertainties. In the calcula-
tion of the rejuvenation quotient 𝑅 (as described in section 3.6) 𝑀cc,single does not account for the
overshooting region, as its extent is not provided by the source of data in fig. 3.2. Consequently,
all values of 𝑅 in figures 4.9 and 4.10 are expected to be shifted to lower 𝑅, as the divisor 𝑀cc,single

is missing a constant summand2. That is not expected to change the results too much, as every
value for R is affected almost equally. Furthermore, 𝑞obsand 𝑓 used in table 4.1 give an orientation,
but not the concrete probability distribution of observed mass ratios as given in Menon et al., 2021,
fig. 9.3 For this purpose, a grid of models would have to be created for each combination of 𝛼sc, 𝛼ov and 𝐵.

Comparing the results to the grid in Menon et al., 2021, many common features stand out: They
point out that their binary evolution models being in contact over nuclear timescale inevitably merge.
That also applies for models in this thesis: All type A and B models featuring a contact on nuclear
timescale are terminated due to 𝐿2 overflow and are consequently expected to merge (see termination
reasons in the captions of the appendix chapter A). The only two models that are terminated because of

1 Still, 𝐵 = 10−20 is arbitrarily chosen and extremely strict. That the value for 𝐵 meeting with nature is still this small, can be
doubted, as it leads to practically suppressing overshooting at all in the models of this thesis. Nevertheless, how strong a
gradient in molecular weight keeps off overshooting from mixing through the stellar envelope, is still uncertain.

2 The extent of the overshooting region in the models that deliver the correlation in fig. 3.2 is assumed to be approximately
constant, because step overshooting (𝛼ov = 0.335) was accounted. 𝐵 = 0.1 (also implemented in these models) is not
expected to constrain the overshooting region, because models in this thesis do not show a relevant effect of 𝐵 = 0.1, as long
as there is no mass transferred (for example, see Kippenhahn diagrams in fig. 4.4 during the initial detached phase).

3 That can be specifically seen by comparing 𝑓relaxed = 0.29 for model 5 in table 4.1 with 𝐻contact (0.95 ≤ 𝑞 ≤ 1) = 0.5 in
Menon et al., 2021, fig. 9. They are not equal.
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secondary hydrogen depletion (they survive the main sequence) are of type C (see fig. A.9 and A.10)–
consequently, they avoid contact on nuclear timescale. Furthermore, nuclear timescale contact binaries
evolve nearly towards equal masses – coinciding with Menon et al., 2021. The only difference is that with
a constrained overshooting, there is a mass ratio oscillation around unity, leading to a higher probability
to observe them at mass ratios further away from 1. Moreover, they point out that “the longer a system
spends time in contact, the likelier it attains a mass ratio of 1”. Models in this thesis show that mass ratio
oscillations during contact may prevent a constant evolution to an equal mass binary (cf. model 7 in
figure 4.5(b)). On the other hand, model 8 (fig. 4.5(c)) shows that type B evolution can also feature
a decreasing amplitude of mass ratio oscillation. This may also be described as a constant evolution
towards an equal-mass binary. Finally, they also conclude that “observed unequal-mass contact systems
are likely to be binaries just nearing contact”. This is also valid for the models of this thesis: All systems
have the smallest observable mass ratios during near-contact phases. At phases of strict contact, they
tend to spend more time at mass ratios closer to one (cf. gray and red shaded phases in fig. 4.3).

The type B mass ratio oscillation (as described in section 4.1) is not a totally new phenomenon in stellar
evolution models: Models in this thesis do not account for energy transfer as described in the introduction
chapter 1. Type B mass ratio oscillation also occurs in binary evolution models, accounting for energy
transfer in Fabry et al., 2023. It is imaginable that a combination of a constrained overshooting region, that
mainly leads to type B evolution in this thesis, with their methodology to account for energy transfer could
amplify the mass ratio oscillation. A bigger amplitude of the 𝑞 oscillation would lead to less time spent at
𝑞obs close to one. Mass ratio oscillation during strict contact also occurs at models accounting for chemi-
cally homogeneous evolution in Marchant et al., 2016. These models do not follow type B evolution, as
they avoid contact on thermal timescale. Anyway, this channel of mass ratio oscillation is not relevant for
the models in this thesis, as the total mass range considers substantial higher masses (𝑀component ≳ 20 M⊙).

Considering the observations in fig. 9 of Menon et al., 2021, one can estimate, if one of the calculated
models in this thesis could meet the requirement of a reduced probability to find a system at a mass ratio
close to one: Model 5 in tab. 4.1 with 𝑓relaxed = 0.29 does not meet the observations as emerged from
Menon et al., 2021. Type B evolution reduces 𝑓 only slightly (on strict as well as on relaxed contact).
Hence, most of the observations would be still expected at a mass ratio close to one. Consequently,
the amplitude of the mass ratio oscillation is not expected to be sufficient to explain the observations.
Accounting for energy transfer as described could alleviate that the amplitude is too small. In contrast,
type C models spend a negligible amount of their total lifespan in an interval 0.95 ≤ 𝑞obs ≤ 1.00
( 𝑓relaxed ≤ 0.01 in table 4.1). Considering the observed contact systems that are summarized in Menon
et al., 2021, fig. 9, at least 5 of them are in this interval. It was extremely improbable to observe binaries
within this interval, if they would follow a type C evolution.

Hence, it is doubtful that the initial parameters that lead to a type C evolution totally comply with
nature. On the other hand, initial parameters leading to a type C evolution are only calculated for one
starting point model, without considering a whole grid. It is imaginable that binary configurations with
smaller orbital periods may lead to a contact phase on nuclear timescale despite having initial type
C parameters. An additional contact on nuclear timescale leading to a considerable amount of time
the system spends at a mass ratio close to one – next to an extensive lifetime during a semi-detached
configuration as typical for type C – would not exclude an observation of 𝑞obs close to one and could still
explain the higher probability to find a binary system at mass ratio further away from one. An initial

38



Chapter 5 Discussion

𝑞i ≈ 1 with a small initial orbital period (so that the system already starts being in near-contact) could
operate analogously.

In summary: While models following type B evolution reduce 𝑓 too less, models with type C evolution
do too much. Nevertheless, this thesis is not intended to give a concrete calibration of the mixing
parameters.
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CHAPTER 6

Conclusion

In this thesis, an examination of the effect of rejuvenation to the mass ratio evolution in massive contact
binaries was performed. The nature of this work is intended as follow-up study of Menon et al., 2021,
where the population of binaries found at a mass ratio close to one was over-estimated. 12 detailed
binary evolution models (and one recalculation) were computed in MESA, in which rejuvenation occurs
with varying efficiency, by modifying physics of overshooting and semiconvection.

The evolution models showed that modifying the mixing parameters can significantly change the
mass ratio evolution. The models are divided in three evolution types, depending on their appearance in
mass ratio evolution: Type A models do not change their overall evolution and stick to the models in
Menon et al., 2021 instead. Type B models rather undergo a mass ratio oscillation around unity than
approaching to equal masses during contact. Type C models avoid a contact configuration on a long,
nuclear timescale at all (cf. section 4.1).

By comparison of all models, it stands out that the evolution type is mainly affected by the extent of
the overshooting region: A reduced extent (𝛼ov = 0.15) usually leads to a type B evolution. Turning
off overshooting (𝛼ov = 0) leads to a type C evolution, effectively avoiding the contact on nuclear
timescale. In contrast, semiconvection usually does not affect the overall evolution type. Instead, a higher
efficiency of semiconvection leads preferably to an enlarged lifespan of the semi-detached phases, where
the observable mass ratio monotonically decreases. Strictly constraining the extent of overshooting
concedes semiconvection to carry more weight by reducing the mean observable mass ratio, as evolution
is dominated by semi-detached configurations (cf. section 4.5).

Rejuvenation is driven by the mixing parameters: A higher efficiency of semiconvection as well as an
enlarge extent of the overshooting region leads to more efficient rejuvenation. The binary evolution model
from Menon et al., 2021 that was used as a starting point features instantaneous rejuvenation. Comparing
the different degrees of rejuvenation in this thesis, a general statement as assumed as hypothesis in the
introductory chapter 1 like “more avoided rejuvenation throughout the whole evolution leads to smaller
observable mass ratio” turns out to be incorrect. Instead, another overall picture arises: Rejuvenation
driven by a larger extent of the overshooting region (higher 𝛼ov) leads to a mean observable mass ratio
𝑞obs closer to one. But rejuvenation driven by a higher efficiency of semiconvection (higher 𝛼sc) leads to
a reduced 𝑞obs, further away from unity, as it preferably affects the semi-detached configurations. Still,
this thesis shows that rejuvenation is closely linked to the overall mass ratio evolution. In particular, a
binary that is at a mass ratio close to one currently, has highly rejuvenated cores (cf. fig. 4.9 & section 4.4).

Considering the overall outcomes of the models in this thesis, two new directions for prospective
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studies emerge:

Further studies could investigate in the mass ratio oscillation during contact, as it occurs in type B
evolution. The mass ratio amplitude for the models in this thesis is not sufficient (as described in the
discursive chapter 5). It is conceivable that a combination of reduced rejuvenation (via a constrained
overshooting region) in this thesis with accounting for energy transfer analogously to Fabry et al., 2023
could sufficiently increase the amplitude of the mass ratio oscillation.

Moreover, as type C evolution stands out with its considerable small mean observable mass ratio
(cf. fig. 4.11), this kind of evolution may indicate the most auspicious channel that could explain the
discrepancy of the overestimated population of binaries at a mass ratio close to one. It may be worth to
investigate in the exact cause that determines whether stars stay in contact on nuclear timescale or break it
off by detaching, because preventing a contact on nuclear timescale seems to affect the mean observable
mass ratio most. A detailed knowledge of the circumstances that cause a detaching could furthermore
support an explanation, why a negligible extent of the overshooting region causes the prevention of
contact at nuclear timescale. Nevertheless, type C models in this thesis can be doubted to reflect nature
(as described in the discursive chapter 5). To show their reasonability is up to a new detailed grid of
binary evolution models, analogously to1 Menon et al., 2021.

1 Has it happened often enough for this work to be cited? Let us quote their paper one last time...
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APPENDIX A

Calculated models in detail

Figure A.1: Model number 1 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 10−4
, 𝐵 = 0.1. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.2: Model number 2 in table 4.1 with the mixing parameters 𝛼ov = 0.15, 𝛼sc = 10−4
, 𝐵 = 0.1. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.3: Model number 3 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 1.0, 𝐵 = 0.1. Initial
masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.4: Model number 4 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 10−4
, 𝐵 = −. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.5: Model number 5 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 1.0, 𝐵 = −. Initial masses
𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels show
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of
the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.6: Model number 6 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 1010
, 𝐵 = 0.1. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.7: Model number 7 in table 4.1 with the mixing parameters 𝛼ov = 0.15, 𝛼sc = 1.0, 𝐵 = 0.1. Initial masses
𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels show
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of
the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.8: Model number 8 in table 4.1 with the mixing parameters 𝛼ov = 0.15, 𝛼sc = 1010
, 𝐵 = 0.1. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.9: Model number 9 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 10−4
, 𝐵 = 1𝑒 − 20. Initial

masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels
show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution
of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
central hydrogen depletion.
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Figure A.10: Model number 10 in table 4.1 with the mixing parameters 𝛼ov = 0, 𝛼sc = 10−4
, 𝐵 = −. Initial masses

𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels show
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of
the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
secondary hydrogen depletion.
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Figure A.11: Model number 11 in table 4.1 with the mixing parameters 𝛼ov = 0, 𝛼sc = 1.0, 𝐵 = −. Initial masses
𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels show
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of
the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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Figure A.12: Model number 12 in table 4.1 with the mixing parameters 𝛼ov = 0.335, 𝛼sc = 1.0, 𝐵 = 1𝑒 − 20.
Initial masses 𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The
left panels show Kippenhahn diagrams for the primary and the secondary, respectively, together with the total
mass evolution of the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021.
The color scheme is reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both
components), gray shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model
terminated because of L2 overflow.
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Figure A.13: Model number 13 in table 4.1 with the mixing parameters 𝛼ov = 0, 𝛼sc = 1010
, 𝐵 = −. Initial masses

𝑀1,i = 14.4, and 𝑀2,i = 11.6, and initial orbital period 𝑃i = 1 d are the same for all models. The left panels show
Kippenhahn diagrams for the primary and the secondary, respectively, together with the total mass evolution of
the binary. The panels on the right have the same pattern as figure 1 in Menon et al., 2021. The color scheme is
reassigned here: Red background shades indicate strict contact phases (𝑅/𝑅RL ≥ 1 for both components), gray
shades indicate near-contact phases (0.9 ≤ 𝑅/𝑅RL < 1 for both components). The model terminated because of
L2 overflow.
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