
Visualization of Milky Way
satellite galaxies

ViSaGE - Visualized Satellite Galaxies Environment

Bachelorarbeit in Physik

angefertigt am Argelander-Institut für Astronomie
vorgelegt der Mathematisch-Naturwissenschaftlichen Fakultät der

Universität Bonn

1. Gutachter: Prof. Dr. Pavel Kroupa
2. Gutachter: Prof. Dr. Klaas S. de Boer

Autor: Manuel Hahn (manuel.hahn@gmx.de)
Bahnhofstraße 2, 54306 Kordel
Matrikelnummer: 1564249

Bonn, September 2009

Contents

1 Introduction 3

2 Requirement analysis and - specification 6
2.1 Functional requirements . 6
2.2 System requirements . 7
2.3 Functional specification . 7

3 System design and - specification 8
3.1 Overview of 3D-Visualization technologies 8

3.1.1 Technologies . 8
3.1.2 Data storages . 9
3.1.3 User interfaces . 10

3.2 System specification . 10

4 Implementation and testing 11
4.1 Preliminary work . 11

4.1.1 Galactocentric coordinate system 11
4.1.2 The Java 3D ViewingPlatform 13
4.1.3 Description of planes . 13
4.1.4 Notes on lights . 15

4.2 Coding . 15
4.3 Testing . 16

5 Deployment 16

6 Concluding remarks 17

References 19

List of figures 20

Acknowledgments 21

3

1 Introduction

The theory of structure formation within the framework of cold dark matter
(CDM) cosmology makes predictions for Milky-Way-Galaxy-type systems con-
cerning number and shape of the distribution of its satellites.

One prediction of the CDM theory is, that the Milky Way Galaxy (MWG) should
contain about 500 sub-haloes with masses M ≥ 108M� within 500 kpc (Moore et
al. 1999). As Kroupa et al. in 2005 stated, there had been found only 13 satellites
within the distance of 500 kpc arround the MWG. In recent years, there have
been found several other satellites including a new class of ultra-faint companion
galaxies with extremly low stellar densities (see Metz et al. 2009a), but the num-
ber of satellites is still an order of magnitude lower than preditced by the CDM
theory.

Secondly, the CDM theory makes a prediction concering the shape of the distri-
bution of its satellites. The theoretical sub-structure distribution of MWG-type
hosts in the framework of CDM theory should be essentially isotropic (i.e. spher-
ical), what was researched by Kroupa et al. (2005). They tested the spatial
distribution of the observed MWG satellites against the null-hypothesis, that it
is drawn randomly from a spherical Dark Matter (DM) sub-structure distribu-
tion. They found that this hypothesis can be excluded with a confidence of 99.5
per cent and that the anisotropy of the distribution is such that the MWG satel-
lites form a disk-like structure which lies nearly perpendicularly to the plane of
the MWG. Metz et al. (2007, 2009a) expanded this research and also considered
the meanwhile found satellites. They confirmed the disk-like structure of the
MWG satellites, called disc-of-satellites (DoS), which is inclined by about 88◦

with respect to the MWG disc and which has a root-mean-square height of about
20 kpc (see figure 1).

As stated above, the theoretical number and spatial sub-structure distribution
of MWG-type hosts, as predicted by the CDM cosmology, is highly inconsistent
with the observed MWG satellites. This problem has become generally knwon
as ’missing satellite problem’ and several approaches have been made to solve
it. One can classify these different approaches to explain the missing satellites in
those using CDM theory and those which try to explain the missing satellites by
giving other explanations besides CDM theory.

4 1 INTRODUCTION

Figure 1: Taken from Metz et al. (2009a): The 3D distribution of the MW
satellite galaxies. In the top-left panel an edge-on view onto the fitted DoS as
given in MKJ07 is shown, derived using the large circles and diamonds. The
MW disc, located in the centre of the plot, is seen edge-on. In the top-right
panel, a view rotated by 90◦ about the polar axis of the MW is shown, and in the
lower-right panel a face-on view on to the fitted disc is plotted. The Magellanic
Clouds are marked by diamond symbols, the dwarf spheroidals by circles, whereby
the smaller circles mark the newly discovered satellites (table 1 from Metz et
al. (2009a)). Uncertainties are indicated by light grey sticks. In addition, the
obscuration region, |b| < 5◦, of the MW is shown as the dark-shaded region (the
light-shaded region being 15◦ obscuration region). The projected northern sky
coverage region of the SDSS is indicated by the yellow-coloured area.

5

After Kroupa et el. (2005) mentioned the fact that a correlation between the
MWG satellites would naturally arise if they were of tidal origin, Metz & Kroupa
(2007) discussed this issue in further detail. The so-called tidal dwarf galaxies
(TDG) arise from fundamental physical processes, i.e. conservation of energy and
angular momentum, and should be produced in any hierarchical structure for-
mation theory. In 2008, Metz et al. found that the total MWG satellite angular
momentum is co-aligned with the normal to the DoS plane, what implies that
the DoS is a rotationally supported structure. This is a natural consequence if
the MWG satellites are of tidal origin.
An explanation for the highly anisotropic spatial distribution of the MWG satel-
lites, the highly inclined DoS, could be that the MWG satellites entered the
MWG halo as a group, what was researched by Metz et al. (2009).

As a reaction to the ’missing satellite problem’, the supporter of CDM theory
developed CDM simulations, tailored specifically to solve this problem. Metz et
al. (2008) compared these simulations with orbital poles and projected uncer-
tainties of MWG satellites, derived from available proper motion measurements.
They argued that the sub-haloes produced in these CDM simulations cannot fully
describe the entire population of satellites orbiting the MWG.
Furthermore, the supporter of CDM theory argue that the Sloan Digital Sky Sur-
vey (SDSS), with which most of the recently discovered satellites were found, has
a limted sky coverage area and thus lead to a selection bias (see also figure 1).
This was researched by Metz et el. (2009). Including the biasing effects due to
the SDSS sky coverage area, their bootstrapping analysis showed that it can be
excluded with a confidence of 99.5 per cent, that the MWG satellites are drawn
randomly from an isotropic distribution.

As mentioned above, there are several approaches for solving the ’missing satel-
lites problem’ which are in parts mutually exclusive. The questions, whether the
MWG satellites are or are not DM dominated and what the origin of the MWG
satellites is, are from utter importance, especially for modern cosmological the-
ory. It is therefore very important to determine the exact number and positions
of the MWG satellites. Hence, special search campaigns like the Stromlo Missing
Satellite Survey (Jerjen H. et al., 2009) were initiated and in the next few years,
new MWG satellites are expected to be discovered.

The aim of this thesis is to develop a software, that can easily be used to visual-
ize the already knwon MWG satellites and the upcoming newly discovered ones.
With the help of this software, it shall be easy to determine the relative position
of the new satellites compared to the DoS and generally its position in the galac-
tocentric coordinate system. This software can be used as a ’DoS-quick-test’, i.e.
a test, whether a newly discovered satellite lies in between the DoS or not.

6 2 REQUIREMENT ANALYSIS AND - SPECIFICATION

After having done the scientific research, it is analyzed how the software is sup-
posed to work in order to help people doing their research (Requirement anal-
ysis, chapter 2). Afterwards, the technhology research is done in order to find
technologies that can be used to realize this software (System design and - speci-
fication, chapter 3). After having done some preliminary work which is necessary
for coding, the software is finally coded and tested (Implementation and testing,
chapter 4). Subsequently, the deployment is discussed (Deployment, chapter 5)
before finally some concluding remarks are made (Concluding remarks, chapter
6).

2 Requirement analysis and - specification

2.1 Functional requirements

The software is supposed to visualize the satellites of the MWG in a galacto-
centric coordinate system. In order to get a ’natural feeling’ for the positions
of the satellites in space, i.e. a view according to humans binocular vision, the
visualization should be three dimensional (3D).

The positions of the upcoming new discovered satellites will be given in equa-
torial coordinates, i.e. right ascencion and declination, and distance. Therefore
the software is supposed to offer an administrative user interface to enter the
positions of the new satellites in equatorial coordinates and distance, which will
be automatically transformed to galctocentric coordinates.

To properly analyze the satellites and their relation to each other, it is important
to be able to filter them. As for example shown in Metz et al. (2007), they used
different data sets, morphological subsamples und kinematic subsamples of the
satellites. Therefore several so-called ’standard filter’ (for a definition see chapter
2.3) should be offered and additionally a possibility to manually select and dese-
lect the satellites. Therewith it is possible to filter the satellites in every possible
way.

To research the relative position of the satellites to the DoS, the software is
supposed to be able to add a disc, given by a normal vector, a translation vector
and a thickness, to the visualization. If one added a new satellite and the DoS to
the visualization, one should quickly be able to decide, whether the new satellite
is in between the DoS or not. (→ DoS-quick-test)

2.2 System requirements 7

2.2 System requirements

The software is supposed to be accessed through the internet. Furthermore, the
software should be able to being run from most of the recent operating systems
and with most of the recent browsers. The administrative user interface should
only be accessible to authorized people. Additionally, the software is supposed to
be developed in that way, that its components are as dynamically and customiz-
able as possible. For example should it be possible to just set a configuration flag
to change the appearance of the satellites (e.g. color or radius) instead of writing
new code. Furthermore, the software should build up on components that are
free software or open source.

2.3 Functional specification

The functional specification of the software arises out of the functional require-
ments in chapter 2.1:

• Administrative user interface to enter the data of the MWG satellites with
the following data fields:

– Name [unique identifier]

– Equatorial coordinates:
Right ascension and declination in the epoch J2000,0

– Distance

– Luminosity

– Type (e.g. dE, dSph etc.)

– Source (e.g. Mateo, M.L., 1998, ARA&A, 36, 435)

• 3D-Visualization of the MWG satellites in a galactocentric coordinate sys-
tem

– ’Galactic Center View’:
4π-solid-angle-view, centered on the galactic center

– ’External View’:
4π-solid-angle-view, as seen from ∞, with Zoom-In/-Out function

– Information about selected MWG satellites

– Information about position of Viewing Platform (VP)

– Standard filter:

∗ Show only objects with galaxy type x (morphological filter)

∗ Show only objects from data source x

∗ Show only objects with a minimum luminosity of x · 106Lsun

8 3 SYSTEM DESIGN AND - SPECIFICATION

– Manual filter:
Show / hide single MWG satellites

– Add a disc, given by a normal vector, a translation vector and a thick-
ness, to the 3D-Visualization

3 System design and - specification

3.1 Overview of 3D-Visualization technologies

In this chapter, the currently available technologies, data storages and user in-
terfaces to build a 3D-Visualization are discussed.

3.1.1 Technologies

OpenGL (Open Graphics Library) is an open specification for a 2D and 3D
graphics application programming interface (API), that was developed by Silicon
Graphics Inc. in 1992. Application developers are free from licensing require-
ments and OpenGL is a platform independant (cross-platform) and language
independent (cross-language) API (see OpenGL A). Due to its cross-platform
character, OpenGL is the leading 3D-specification in industry (see OpenGL B).

Direct3D is a 2D and 3D graphics API, that was developed by RenderMorphics
in 1992 and bought by Microsoft in 1995. Direct3D is a proprietary API, which
will only run on Microsoft platforms (see Direct3D).

S2PLOT is 3D plotting library, that was developed by the Centre for Astro-
physics & Supercomputing at Swinburne University of Technology. S2PLOT is
freely available for non-commercial and educational use, but the programming
library and documentation may not be redistributed or sub-licensed in any form
without permission from Swinburne University of Technology. The S2PLOT li-
brary is based on OpenGL, was written in C and can be used with C, C++
and FORTRAN programs on GNU/Linux and Apple/OSX (no Microsoft OS).
S2PLOT content can be embedded in web pages with Flash and in PDF doc-
uments using Adobe Acrobat 3D (commercial software) (see Barnes & Fluke,
2008).

JOGL (Java OpenGL) is a library, that allows OpenGL to be used in the object-
oriented Java programming language. JOGL was originally developed by Ken-
neth Bradley Russell and Christopher John Kline, and is currently being devel-
oped by the Game Technology Group at Sun Microsystems. JOGL is distributed
under BSD license (Berkeley Software Distribution) and is due to its constituents,

3.1 Overview of 3D-Visualization technologies 9

Java and OpenGL, cross-platform (see JOGL).

Java 3D is a scene graph-based 3D API for the object-oriented Java program-
ming language. It runs on top of either OpenGL or Direct3D, depending on
the users operating system. Java 3D was originally developed by a collabora-
tion of Intel, Silicon Graphics, Apple and Sun in 1997 and is currently developed
by Sun Microsystems. It is distributed under the GNU General Public License
(GNU GPL) version 2 and is due to its constituents, Java and Direct3D/OpenGL,
cross-plattform (see Java3D).

Adobe Acrobat 3D (Acrobat 3D) is a program, that allows one to insert 3D
objects into Adobe PDF (PDF) files, which can be viewed with the Adobe Reader
(Freeware, cross-platform). It can import 3D objects from more than 50 third-
party file formats and converts it into the Universal 3D (U3D) file format (see
chapter 3.1.2), which then can be embedded into the PDF file (see Barnes & Fluke
2008). Acrobat 3D belongs to the family of computer programs called Adobe Ac-
robat, which was developed by Adobe Systems. Adobe Acrobat is a commercial
software and costs about 1,000 EUR (Adobe Acrobat 9 Pro Extended, see Acro-
bat3D A). It will only run on Microsoft platforms, but if the PDF file once was
created on a Microsoft platform with Acrobat 3D, one can deploy the PDF file
and PDF is cross-platform. Therefore - in the context of deploying - Acrobat 3D
can be considered as cross-platform (see Acrobat3D B).

movie15 is an extension package for LATEX and pdfLATEX, which provides an
interface to embed movies, sounds and 3D objects into PDF files, which can be
viewed with the Adobe Reader (Freeware, cross-platform). The exclusive file for-
mat for embedding 3D objects is the U3D file format (see chapter 3.1.2). movie15
was developed by Alexander Grahn and is distrubted under the LATEX Project
Public License (LPPL). Due to the fact that movie15 is based on LATEX, it is
cross-platform (see movie15).

3.1.2 Data storages

Universal 3D (U3D) is a compressed file format for 3D computer graphics data.
It was defined by a consortium called 3D Industry Forum (3DIF) (consisting of
e.g. Intel, Boeing, HP, Adobe Systems, Bentley Systems, Right Hemisphere) and
was standardized by Ecma International in 2005. 3D objects, stored in U3D,
can natively be embedded into PDF files and interactively visualized by Adobe
Reader (since version 7) (see U3D).

Extensible 3D Graphics (X3D) is a XML-based file format for 3D computer
graphics data. X3D has been definied by the World Wide Web Consortium

10 3 SYSTEM DESIGN AND - SPECIFICATION

(W3C) in 2001 and has been made to become the official standard for 3D graphics
in the internet. X3D is the successor to the Virtual Reality Modeling Languange
(VRML) and was ratified as an ISO standard in 2004 (see X3D).

Besides special data storages for 3D graphics, one can consider to store the data
in proprietary or self-developed file formats like a text file.

Alternatively, one can store the data in a database like Microsoft SQL or Post-
greSQL. Doing so, it is required to operate a database management system on
the server.

3.1.3 User interfaces

Adobe Flash (Flash) is a multimedia platform for adding animation and inter-
activity to web pages. Flash was developed by Macromedia in 1996 and bought
by Adobe in 2006. In order to view Flash files in a web browser, one needs to
install the Adobe Flash Player, which is cross-platform. Flash files are written
with the commercial software Adobe Flash CS4 Professional, which costs about
800 EUR (see Flash).

Java applet is a platform for executing Java bytecode in web pages. Java ap-
plets were introduced by Sun Microsystems in 1995. In order to view Java applets
in a web browser, one needs to install a Java Virtual Machine (JVM), which is
cross-platform. Java applets can be written with several free and open source
software development tools (see JavaApplet).

Adobe Reader is a computer programm to display PDF files. Adobe Reader
was first published by Adobe Systems in 1993, it is cross-platform and Freeware.
PDF files can be written for example with the commercial software Adobe Ac-
robat or with the free software LATEX. Especially, if one wants to build a PDF
file with an embedded 3D object, one can either use Adobe Acrobat with its 3D
component or LATEX with the movie15 package (see AdobeReader and movie15).

3.2 System specification

Based on the system requirements in chapter 2.2 and the technical research in
chapter 3.1, the following constellation of technologies will be used:

• Technology: Java 3D

• Data storage: X3D

• User interface: Java-Applet

11

Java 3D is cross-platform and a free software. In contrast to OpenGL, Java 3D
uses the Java programming language, which has a simpler object model. Addi-
tionally, Java 3D uses Direct3D or OpenGL, depending on what is best for the
users operating system. I couldn’t determine any advantage of S2PLOT over
Java 3D and due to the fact that Java 3D has a much bigger community who
develop and maintain the software, I decided to use Java 3D.

For the amount of data one can expect in this project (number of satellites < 103),
a database with a database management system would definitely be oversized.
Furthermore, a self-developed file format isn’t necessary either, because the data
storages, especially made for 3D graphics data, are sufficient. I have chosen X3D
as file format, because it is the official standard for 3D graphics in the internet.
Besides that, X3D is a XML-based format and can thus being read very well.

Finally, using a Java applet is the natural choice if the underlying technology is
Java 3D.

4 Implementation and testing

4.1 Preliminary work

4.1.1 Galactocentric coordinate system

The MWG satellites are supposed to be visualized in the Galactocentric coor-
dinate system, i.e. the standard Galactic coordinate system with the Galactic
Center (GC) (instead of the sun) as the center of the coordinate system. Due
to the fact that the satellite data is entered in equatorial coordinates, one has to
transform these coordinates to galactocentric coordinates. This will be done in 3
steps:

First of all, one has to transform the equatorial coordinates to cartesian coordi-
nates. Equatorial coordinates, given as right ascension α and declination δ, plus
the distance r were transformed to cartesian coordinates via (see figure 2):

~rcartesian =

xy
z

 =

r cos δ cosα
r cos δ sinα
r sin δ

 (4.1)

The second step is to transform the cartesian coordinates to the standard carte-
sian Galactic coordinate system (where the center of the coordinate system is
the sun). The distance earth - sun is approximately 16 · 10−6 ly (light travels
from sun to earth in ≈ 8 minutes, thus one gets the distance d = 8

365·24·60
ly). As

12 4 IMPLEMENTATION AND TESTING

Figure 2: Transformation of equatorial coordinates to cartesian coordinates

the distance earth - sun is very small in comparison to the uncertainties of the
distances of the satellites, which are at least 1 kpc = 3,26 ly, one can consider the
cartesian coordinates, as calculated in the first step, as heliocentric coordinates.
Hence, the transformation from heliocentric cartesian coordinates to standard
cartesian galactic coordinates is done by rotating the coordinate system axis by
the matrix R:

~rgalactic =

x′y′
z′

 = R · ~rcartesian (4.2)

The matrix R is given by (Manuel Metz, private communication):

R =

−0.06699 −0.87276 −0.48354
+0.49273 −0.45035 +0.74458
−0.86760 −0.18837 +0.46020

 (4.3)

In the last step, one has to transform the standard cartesian galactic coordinates
to cartesian galactocentric coordinates. This is simply done by subtracting the
distance sun - GC, dsun := 8.5 kpc, from the x-coordinate of the standard cartesian
galactic coordinate vector:

~rgalactocentric =

x′′y′′
z′′

 = ~rgalactic −

dsun

0
0

 (4.4)

4.1 Preliminary work 13

4.1.2 The Java 3D ViewingPlatform

In order to implement Zoom-In/-Out functions and rotation of the 3D objects,
one has to modify the Java 3D ViewingPlatform. In Java 3D, there only exists
one right-handed coordinate system (z-axis points to the viewer), which is fixed,
and the 3D objects are fixed to this coordinate system. The possibility to view
the 3D objects in Java 3D is given by the Java 3D ViewingPlatform. One can
imagine, that one stands on a viewing platform and watches a nice building. The
difference between this viewing platform and the Java 3D ViewingPlatform is,
that the latter is able to ’fly’ in space. When the 3D world is initialized, the

Java 3D ViewingPlatform points to the direction ~dViewingPlatform =
(

x
y
z

)
=
(

0
0
−1

)
.

Thus, if you want to see the GC, you have to shift the Java 3D ViewingPlatform

to e.g. ~rViewingPlatform =
(

x
y
z

)
=
(

0
0
50

)
. The action performed right now was a

Zoom-Out by 50 kpc.

To discuss this in general, one has to imagine an intialized Java 3D Viewing-

Platform, which points to the direction ~dViewingPlatform =
(

x
y
z

)
=
(

0
0
−1

)
(see fig-

ure 3a). One now wants to view the 3D object from the position ~t (see figure
3b). Therefore the Java 3D ViewingPlatform is shifted to this position ~t. The
problem now is, that the Java 3D ViewingPlatform still points to the direction
~dViewingPlatform =

(
x
y
z

)
=
(

0
0
−1

)
and thus one can’t see the 3D object. One has

to rotate the Java 3D ViewingPlatform in that way, that it points to the origin.
This is done by the rotation matrix R (see figure 3c).

In the software, the rotation matrix R and the translation vector ~t of the current
position of the Java 3D ViewingPlatform are given at the bottom of the visual-
ization window (see figure 5).

4.1.3 Description of planes

The software is supposed to be able to add a disc, given by a normal vector ~n, a
translation vector ~p and a thickness d, to the visualization.

One can mathematically describe a plane by using the Hesse form:

~n · (~x− ~p) = 0 (4.5)

In the software, a ’plane’ is described by a cylinder with height d (paramter thick-
ness) and a very big radius (≈ 5,000 kpc; which is one order of magnitude higher
than the virial radius of the MWG). The orientation of a cylinder in Java 3D shall
be given by the normal vector ~n′ of the top surface of the cylinder (see figure 4).

14 4 IMPLEMENTATION AND TESTING

Figure 3: Modifying the Java 3D ViewingPlatform

When initalized, a cylinder has the orientation ~n′ =
(

0
1
0

)
and is positioned at the

origin.

First we need to transform the cylinder in that way, that the normal vectors ~n
and ~n′ point to the same direction. Therefore we have to rotate ~n′ arround an
axis ~a by an angle φ. One gets ~a by building the cross product between ~n′ and ~n:

~a = ~n× ~n′ (4.6)

Now one needs to calculate the angle between ~n and ~n′. This is simply given by:

φ = arccos

∣∣∣∣ ~n′ · ~n|~n′| |~n|

∣∣∣∣ (4.7)

Finally after rotating the cylinder to the orientation given by ~n, one has to shift
the cylinder to the position given by the translation vector ~p (see again figure 4).

4.2 Coding 15

Figure 4: Descripton of a plane in Java 3D

4.1.4 Notes on lights

In order to enhance the 3D feeling in Java 3D, one has to add one or more light
sources to the visualization and modify the surface of the 3D objects in that
way, that light can be reflected on it. In this software, only one light source
is used, i.e. a point source located at the origin (GC), which emits light in all
directions. This enhances the 3D feeling in the visualization, as said before, but
it has got an other big advantage. If one makes a screenshot of the visualization,
for example to publish it, one only gets a 2D image, but one can use the shadings
of the surface of the 3D objects to determine the satellites position relative to
the origin (GC) (see figure 5).

4.2 Coding

The source code of the software is written in Java with the free, open source
and cross-platform software development environment Eclipse (see Eclipse). As
already said, the sotfware is written on the base of the 3D API Java 3D. Further-
more, an open source document object model for XML, called JDOM, was used
to implement the interaction between Java and the X3D file (see JDOM).

16 5 DEPLOYMENT

4.3 Testing

During software development, every completed part of the visualization was ex-
tensively tested. The provided functions were tested and additionally any con-
stellation of erroneous user inputs were evaluated and tested.

The completed Java applet, embedded in a webpage, was tested on Mac OS
X, Windows XP and Linux Ubuntu 9.04 with the browsers Safari, Firefox and
Internet Explorer.

5 Deployment

This software is distributed under the name ”ViSaGE - Visualized Satellite Galax-
ies Environment”. Due to the fact that Java 3D is licensed under the GNU
General Public License (GNU GPL), wich contains a Copyleft condition (see
GNUGLP), the software ViSaGE is distributed under the GNU GPL as well.

In the ViSaGE, there has been entered data from 20 MWG satellites. This data
was taken from various sources, which are given in the visualization and refer-
enced in this thesis. Several data concerning luminosity and type couldn’t be
found in these sources, hence if a luminosity (type) for a satellite couldn’t be
determined, a ”0” (”x”) was entered. One can manually add / remove / edit
satellite data with the ViSaGE administration user interface.

The complete sourde code for the visualization - and administration class as well
as the compiled and signed jar file can be found on the enclosed CD. On this
CD one can also find a webpage, which contains a welcome page with a general
description and an electronic version of this thesis, an installation guide and the
administration - and visualization user interface. The webpage can be viewed by
executing the index.html which one can find in the root folder of the CD. Finally,
on the CD one can find a X3D file named data.x3d, in which the data is stored
and some configurations are made.

A screenshot of the ViSaGE can be found in figure 5.

17

Figure 5: Screenshot of the ViSaGE

6 Concluding remarks

In this bachelor thesis, a Milky Way (MW) satellite galaxies visualization called
ViSaGE was developed. With this software, one can add, remove and edit satel-
lites of the MW and visualize them in a 3D environment with rotatation - and
Zoom-In / Zoom-Out functions. One further has the possibility to add an arbi-
trary disc to the visualization and to filter the view of the satellites in various
ways. When clicked on a satellite in the visualization, the satellite appears in
white color and in the table below one can see further details of the satellite
(name, position, distance, luminosity, type and source). It is also possible to
select a satellite in the table, what causes the satellite in the visualization to
appear in white color. ViSaGE is a Java applet, which can be embedded in a
webpage, like it has been done on the webpapge delivered on the enclosed CD.

On the webpage on the enclosed CD one can find the ViSaGE, which displays 20
MW satellite galxies. As one can see in figure 6, the view as described in figure
1, top-left panel, can be reproduced very well. With ViSaGE it should now be
easy to visualize newly discovered MW satellite galaxies, which are supposed to
be found due to upcoming surveys like the SMSS. And due to this, it should also

18 6 CONCLUDING REMARKS

be easy to determine, whether a newly discovered satellite lies in between the
DoS or not (DoS-quick-test).

To gain a better understanding with respect to the ’missing satellite problem’,
the distribution of the Andromeda satellites are recently researched as well (see
e.g. Metz et al. 2009a). Hence, the ViSaGE should be upgraded in order to
display the Andromeda stallites as well. The ViSaGE was designed in that way,
that this upgrade can easily be done.

Figure 6: The 3D distribution of 20 MW satellite galaxies in the ViSaGE (see
table in ViSaGE for futher details). The MW is shown nearly edge-on. The view
described in figure 1, top-left panel, is shown.

19

References

Acrobat3D A, as at September 28th, 2009:
https://store.adobe.com/

Acrobat3D B, as at September 28th, 2009:
http://en.wikipedia.org/wiki/Adobe_Acrobat

AdobeReader, as at September 28th, 2009:
http://de.wikipedia.org/wiki/Adobe_Reader

Barnes, D. G., Fluke, C. J., 2008, NewA, 13, 8, 599
Belokurov, V., et al., 2006b, ApJ, 647, I2, L111
Belokurov, V., et al., 2007, ApJ, 654, 897
Belokurov, V., et al., 2008, ApJ, 686, I2, L83
Direct3D, as at September 28th, 2009:

http://en.wikipedia.org/wiki/Microsoft_Direct3D

Eclipse, as at September 28th, 2009:
http://www.eclipse.org/

Flash, as at September 28th, 2009:
http://en.wikipedia.org/wiki/Adobe_Flash and
https://store.adobe.com/

GNUGPL, as at September 28th, 2009:
http://www.gnu.org/licenses/gpl.html

Java3D, as at September 28th, 2009:
http://en.wikipedia.org/wiki/Java3D

JavaApplet, as at September 28th, 2009:
http://en.wikipedia.org/wiki/Java_applet

JDOM, as at September 28th, 2009:
http://jdom.org/

Jerjen H. et al., as at September 28th, 2009:
http://msowww.anu.edu.au/~jerjen/SMS_Survey.html

JOGL, as at September 28th, 2009:
http://en.wikipedia.org/wiki/Java_OpenGL

Kroupa, P., Theis, C., Boily, C.M., 2005, A&A, 431, 517
Metz, M., Kroupa, P., 2007, MNRAS, 376, 387
Metz, M., Kroupa, P., Jerjen, H., 2007, MNRAS, 374, 1125 (MKJ07)
Metz, M., Kroupa, P., Libeskind N. I., 2008, ApJ 680, 287
Metz, M., Kroupa, P., Jerjen, H., 2009a, MNRAS, 394, 2223
Metz, M., Kroupa, P., Theis, C., Hensler, G., Jerjen, H., 2009b,

ApJ, 697, 269
Moore, B., Ghigna, S., Governato, F., et al., 1999, ApJ, 524, L19
movie15, as at September 28th, 2009:

http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/

OpenGL A, as at September 28th, 2009:
http://www.opengl.org/about/overview/

https://store.adobe.com/
http://en.wikipedia.org/wiki/Adobe_Acrobat
http://de.wikipedia.org/wiki/Adobe_Reader
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://www.eclipse.org/
http://en.wikipedia.org/wiki/Adobe_Flash
https://store.adobe.com/
http://www.gnu.org/licenses/gpl.html
http://en.wikipedia.org/wiki/Java3D
http://en.wikipedia.org/wiki/Java_applet
http://jdom.org/
http://msowww.anu.edu.au/~jerjen/SMS_Survey.html
http://en.wikipedia.org/wiki/Java_OpenGL
http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/
http://www.opengl.org/about/overview/

20

OpenGL B, as at September 28th, 2009:
http://de.wikipedia.org/wiki/OpenGL

U3D, as at September 28th, 2009:
http://www.ecma-international.org/news/PressReleases/PR TC43 U3D
Aug05.htm

van den Bergh, S., 2006, AJ, 132, I4, 1571
Walsh, S.M., Jerjen, H., Willman B., 2007, ApJ, 662, I2, L83
Willman, B., et al., 2005, AJ, 129, I6, 2692
X3D, as at September 28th, 2009:

http://de.wikipedia.org/wiki/X3D and
http://www.web3d.org/x3d

Zucker, D.B., et al., 2006, ApJ, 643, L103

Source of the MWG image, which can be found as a texture inside the visualiza-
tion:
NASA, JPL-Caltech, R. Hurt (SSC-Caltech), ssc2008-10a

http://sscws1.ipac.caltech.edu/Imagegallery/image.php?image_

name=ssc2008-10a

List of Figures

1 The 3D distribution of the MW satellite galaxies 4
2 Transformation of equatorial coordinates to cartesian coordinates 12
3 Modifying the Java 3D ViewingPlatform 14
4 Descripton of a plane in Java 3D 15
5 Screenshot of the ViSaGE . 17
6 The 3D distribution of 20 MW satellite galaxies in the ViSaGE . 18

http://de.wikipedia.org/wiki/OpenGL
http://de.wikipedia.org/wiki/X3D
http://www.web3d.org/x3d
http://sscws1.ipac.caltech.edu/Imagegallery/image.php?image_
name=ssc2008-10a

21

Acknowledgments

First of all I want to thank my family and especially my parents for their un-
divided help and support. I couldn’t have finished my bachelor degree without
them.

At the University of Bonn I want to thank Pavel Kroupa for his support dur-
ing writing my thesis and his research group in general for the pleasent working
environment. Especially, I want to thank Marcel Pawlowski for answering my
questions and testing the software.

Finally, I want to thank Anton Ippendorf for proofreading the thesis and testing
the software and Christian Karrasch for digitizing the figures.

This thesis is dedicated to my grandmother Irmgard Piepenbrock-Lieser.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate kenntlich gemacht
habe.

Bonn, den 29.09.2009 ...
(Manuel Hahn)

	Introduction
	Requirement analysis and - specification
	Functional requirements
	System requirements
	Functional specification

	System design and - specification
	Overview of 3D-Visualization technologies
	Technologies
	Data storages
	User interfaces

	System specification

	Implementation and testing
	Preliminary work
	Galactocentric coordinate system
	The Java 3D ViewingPlatform
	Description of planes
	Notes on lights

	Coding
	Testing

	Deployment
	Concluding remarks
	References
	List of figures
	Acknowledgments

