The problem of the missing baryons

The problem of the missing baryons

Inferred from	Ω _b (%) for h ₇₀ =1
BBN + D/H	4.4 ± 0.4
CMB anisotropy	4.6 ± 0.2
Lyα forest at z>2	>3.5
Observations at z<2	
Stars	0.26 ± 0.08
HI + HeI + H ₂	0.080 ± 0.016
X-ray gas in clusters	0.21 ± 0.06
Lyα forest	1.34 ± 0.23
Warm + warm-hot OVI	$0.6^{+0.4}_{-0.3}$
Total at z<2	2.5 ^{+0.5} _{-0.4}
Missing baryons at z<2	2.1 ^{+0.5} _{-0.4}

The missing baryons

The Warm-Hot IGM

• Hydrodynamical simulations predict that, for z<1-2, roughly 30-40% of the baryons lie in a tenuous warm-hot intergalactic medium (WHIM) at overdensities $\delta \approx 5-100$

• The WHIM was shock-heated to temperatures of $10^5 - 10^7$ K during the process of structure formation (accretion onto non-linear structures like filaments and clumps)

The WHIM

 At these temperatures C, N, O and Ne (the most abundant metals in gas with solar-like composition) are highly ionized

 They are mainly found in the ionic states with one or two electrons

 The strongest bound-bound transitions from these ions fall in the soft X-ray band

WHIM lines

Ion	Energy (eV)	f
O vi	11.95+12.01	0.19
O vi 1s-2p	563	0.53
O vii 1 <i>s</i> –2 <i>p</i>	574	0.70
O vii 1 <i>s</i> –3 <i>p</i>	666	0.15
O VIII $1s-2p$	654	0.42
C v 1 <i>s</i> –2 <i>p</i>	308	0.65
C vi 1s-2p	367	0.42
Ne ix $1s-2p$	922	0.72
Fe xvII 2 <i>p</i> −3 <i>d</i>	826	3.00
Mg xi 1 <i>s</i> –2 <i>p</i>	1352	0.74

Notes. Column 1: ion; Column 2: wavelength (eV); Column 3: oscillator strength.

Figure 5

The ion fraction distributions, represented as column densities for a total gas column of 1019 cm-2 and metallicities of 0.1 Z_☉. The UV lines are effective at detecting absorbing gas for $T < 5 \times 10^5$ K and currently have significantly better sensitivity than the X-ray OVII Kα and OVIII Kα lines, which are good diagnostics for gas temperatures ranging from $0.5 \text{ to } 5 \times 10^6 \text{ K}.$ Absorption by OVII, OVIII, and NeIX have been detected at z = 0, probably because of the higher metallicity of Galactic Halo gas. The NVII ion (dotted), which has a hyperfine line in the radio region, is also shown.

The WHIM in absorption

- A forest of weak absorption lines is expected to be imprinted in the X-ray spectra of all background sources by these WHIM filaments
- This is the direct analog of the Lyman-α forest due to colder neutral hydrogen detected in the optical spectra of quasars
- Typical expected column densities are N<10¹⁶ cm⁻² with equivalent widths of W<18-30 mÅ, depending on the particular ion

WHIM detection

- Metal absorption lines from warm-hot gas at z=0 have been detected in X-rays and in the UV in association with the Milky Way and the Local Group
- To measure the cosmic density of the WHIM requires observation along random, unprivileged, lines of sight
- In the standard cosmology, only a single O_{VII} K α system with N>10¹⁶ cm⁻² is expected along a random line of sight up to z=0.3 with a probability of nearly 60% whereas eight systems with N>10¹⁵ cm⁻² are expected

Why is it hard to detect them?

Detectors are smaller in X-ray and spectral resolution is poorer than in other bands:

- COS on HST: 2,000 cm² and R=20,000
- LETG on Chandra: 15 cm² and R=440
- RGS on XMM: 55 cm² and R=360
- The typical equivalent width of the more common WHIM lines (O_{VII}) is 3 mÅ while the spectral resolution of the instruments is roughly 50 mÅ

- Therefore a very large number of photons is needed for a statistically significant detection of a nonsaturated line (nearly 2,500 counts for a 3σ detection)
- However, distant soft X-ray sources are faint and this would require prohibitive integration times (the brightest Seyfert galaxies would require 2.5 Ms integration with Chandra even though they only lie at z=0.05)
- One possible solution is to observe variable background sources in unusually bright states

Detection of the WHIM

- On 26-27 October 2002 and 1-2 July 2003, Nicastro et al.
 observed the blazar Markarian 421 at its historical maxima
- They detected 24 metal absorption lines, 9 of which belonging to 2 intervening absorption systems at z=0.011 (O_{VII} , N_{VII}) and 0.027 (O_{VII} , N_{VII} , N_{VII})
- The remaining lines are identified as belonging to the interstellar medium of our Galaxy or to the Local Group WHIM filament and are not of cosmological relevance

Measuring the density of the WHIM

- Ionization corrections and metallicity estimates can be computed using the O_{VI} − O_{VII}, N_{VI} − N_{VII} and HI ratios. Data suggest log(T/K)≈6 and [O/H]>-1.5 (-1.3)
- This allows us to compute the cosmological baryon density in X-ray filaments

$$\Omega_{\mathrm{WHIM}} = \frac{\mu m_{\mathrm{H}}}{\rho_{c}} \frac{\sum_{i,j} \left(\frac{A_{\mathrm{H}}}{A_{o}}\right)_{i,j} \left(\frac{N(\mathrm{O\,vII})}{X(\mathrm{O\,vII})}\right)_{i,j}}{\sum_{j} d_{c}(z_{j})},$$

Missing baryons found?

• Adopting a distance to Markarian 421 of 128 h_{70}^{-1} Mpc and a temperature of the IGM of $10^{6.1}$ K, gives

$$100 \times \Omega_b^{WHIM} = 2.7^{+3.8}_{-1.9} \times 10^{-[O/H]_{-1}}$$

WHIM perspectives

- This result is controversial as it is based on a single line of sight and ionization corrections are highly uncertain
- Searches of the WHIM with Suzaku were not successful
- The future lies in COS (for the O_{VI}) and the International X-ray Observatory (IXO), with a collecting area of 3,000 cm² and a resolving power of R=3,000
- It has been also suggested to use the X-ray afterglow of gamma-ray bursts as background sources

Baryon Census (low-z) Probed by X-ray lines, broad Lya Both of these are uncertain WHIM (OVI) 10% **IGM** Systematics: Lyα Forest "Missing" Baryons 30% - EUV radiation field 53% - Oxygen metallicity - Ioniz corrections Galaxies - Cloud geometry 7%

Summary of Results:

We have accounted for ~50% of the baryons

- 10% in collapsed structures (galaxies, clusters)
- 30% in warm (10^4 K) photoionized gas (Ly α)
- 10% in hot (10^{5.5} K) gas (OVI ultraviolet lines)

Other 50% may be in even hotter (106 K) gas

The hot (OVI) gas is close to galaxies, and thus is a reservoir for low-Z gas infall

- Within 200 kpc of 0.1 L* galaxies (outflows?)
- Cooling \Rightarrow 0.1 M_{sun}/yr infall to halos?