Super star cluster RI36: puzzles outside and inside

Sambaran Banerjee with Pavel Kroupa and Seungkyung Oh Argelander-Institut für Astronomie, University of Bonn

@ "Aarseth N-body meeting in Bonn" Dec. 3-5, 2012

Super-cluster R136: a magnificent gallery of massive stars

30 Doradus (Tarantula Nebula) and R136 cluster in the LMC. Image credit: ESO

Puzzle outside:

- Speeding massive stars (e.g. 30 Dor 016)
- "Slow runaway"s / isolated massive star formation? (e.g.VFTS 682)
 Puzzle inside:
- "Monster star"s: most massive star discovered so far! (M $\approx 300 M_{\odot}$)
- RI36 in virial equilibrium. No gas expulsion?

Runaway massive stars from RI36

Puzzle outside: "slow runaway" star VFTS 682

VFTS 682 estimates Present day mass: $150 M_{\odot}$ Projected distance: 30 pc <u>**3D velocity:**</u> 40 km S^{-1} (Bestenlehner et al. 2011) No bow-shock detected

Image Credit: ESO/VISTA Magellanic Cloud survey

Another runaway: 30 Dor 016

Estimates: PD mass $90M_{\odot}$; projected distance 120 pc; velocity (3D) 150 km S^{-1} (Evans et al. 2010, ApJ, 715, L74)

"Super-elastic" encounter

The most likely result of a binary---single-star close encounter: hard binary hardens (Heggie's law)

Both intruder star & binary get recoiled with larger total K.E.

Hard binary \Rightarrow energy source

Launches runaway stars

Image not to scale

Runaway OB stars

- Fast-moving Galactic-field OB stars that apparently are unrelated to any stellar
 assembly
- Majority of them (with known proper motions) can be traced back to a parent star cluster (e.g. Schilbach & Röser, 2008)
- Also detectable by imaging their 'bowshocks' (Gvaramadze et al. 2010, 2011)

From Gvaramadze et al., 2011, A&A, 535, A29

<u>Runaway OB stars are widely believed to be former members of star</u> clusters that received high ejection velocities in dynamical encounters

Puzzle outside: "slow runaway" star VFTS 682

VFTS 682 estimates Present day mass: $150 M_{\odot}$ **Projected distance:** 30 pc <u>**3D velocity**</u>: 40 km S^{-1} (Bestenlehner et al. 2011) No bow-shock detected

VFTS 682:"Slow runaway" from R136 or massive star formed alone?

Modeling R136's evolution using direct N-body integration

- Initially <u>Plummer cluster</u> of $M_{cl}(0) \approx 10^5 M_{\odot}$ (upper mass limit of R136)
- Initial half-mass radius $r_h(0) \approx 0.8$ pc (core radius $r_c \leq 0.3$ pc observed upper limit; Mackey & Gilmore 2003)
- <u>Canonical IMF</u> over $0.08M_{\odot} < m_s < 150M_{\odot}$ and metallicity appropriate for LMC ($Z = 0.5Z_{\odot}$)
- <u>Primordial binary distribution</u> truncated at $m_s = 5M_{\odot}$
- Synthetic stellar & binary evolution by Hurley et al. (2000, 2002)
- <u>Complete primordial mass segregation</u>
- Star by star N-body integration (4 models) using state-of-the-art <u>"NBODY6" integrator aided by GPU hardware acceleration</u> (Nitadori & Aarseth 2012)

Model R136: primordial binaries constrained by observations

- $m_s > 5M_{\odot}$ all initially in binaries, rest initially single. Truncation for computational ease; direct integration of $N \approx 1.7 \times 10^5$ system with 100% primordial binaries computationally prohibitive (regularized binary orbits not yet parallelized or accelerated)
- For $m_s > 20M_{\odot}$ primary, uniform period distribution over $0.5 < \log_{10} P(\text{ day}) < 4$ (Sana & Evans 2011)
- For $m_s < 20 M_{\odot}$, Kroupa (1995) birth period distribution (without premain-sequence evolution) over $1.0 < \log_{10} P < 8.43$

Binary energy dist.

- Ordered pairing, thermal eccentricity distribution
- All binaries completely mass-segregated initially
- As such biggest direct N-body simulations so far with realistic (and messy) initial conditions (tight, massive, segregated primordial binaries)!!

RI36 model computation

Movie credit: Seungkyung Oh

Mass dep.

Note: largest recorded $V \approx 300 \text{ km S}^{-1}$

VFTS 682-like slow runaways from computations

Model Number	Time <i>t</i> (Myr)	Mass M (M_{\odot})	Distance <i>R</i> (pc)	Velocity V (km s ⁻¹)
1	2.8	256.4	31.9	27.5
	3.2	135.9	26.6	34.8
2	2.6	126.4	27.7	45.7
	2.6	125.9	29.9	49.4
3	2.6	106.9	45.7	27.3
4	1.9	169.1	29.3	29.0
	1.9	116.9	35.2	32.8
VFTS 682	<3.0	≈150.0	≈ 30.0	≈ 40.0

Runaway single stars from computed models matching well with VFTS 682

VFTS 682-like "slow runaway" VMS is common from R136like cluster \Rightarrow isolated formation scenario unnecessary !

Banerjee, S., Kroupa, P. & Oh, S. 2012, ApJ, 746, 15

"Super-canonical" stars in RI36

Observation of "super-canonical" stars in RI36

VLT IR (Ks) image of central 3 X 3 pc of R136 (inset I X I pc) showing the "super-canonical" single stars 'al', 'a2', 'a3' ('c' possibly a binary)

Super-canonical stars \Rightarrow

stars with initial masses accepted $\approx 150 M_{\odot}$ upper limit of stellar IMF.

How do super-canonical stars appear in RI36?

Primordial formation via star formation process violating canonical $150 M_{\odot}$ upper limit

Oľ

Late formation via dynamical means, e.g., dynamically induced merger of massive O-star binaries

Dense R136 cluster is a factory of binarysingle & binary-binary interactions inducing binary stellar mergers!

Dynamical encounters

SC stars

Encounter hardening: hard binary => energy source "super-elastic" encounter

Model R136: stellar evolution & hydrodynamics

- Analytical stellar and binary evolution schemes by Hurley et al. (2000, 2002) the SSE and BSE schemes
- Wind: only Nieuwenhuijzen & de Jager empirical scheme for massive MS stars, transition to WR-phase not included --- wind mass loss grossly underestimated
- Idealized treatment of MS-MS collisions: (a) no mass loss (b) complete mixing (Hurley et al. 2005). Gives most massive, youngest and chemically most homogeneous merger product
- Despite limitations, best available treatments in a direct N-body model (possible effects discussed later)

Appearance of SC stars in computed models

(Spurious SC members: instant mergers of highly eccentric primordial binaries)

SC stars either remain close to cluster center or are born runaways

A more realistic stellar evolution: implications

Lifetime in super-canonical phase $(M > 150 M_{\odot}) \tau_{sc} \approx 1.5 \text{ Myr}$

Model ID	T_0 (Myr)	$M_0~(M_\odot)$	$M_{\rm max}~(M_{\odot})$	$T_{\rm max}$ (Myr)	$\mathcal{N}_{ m max,in}$	$\mathcal{N}_{\mathrm{tot}}$
1	2.6	193.9	193.9	2.6	1	2
2	$2.0 \ (3.0)^a$	$155.2 \ (181.4)^a$	181.4	3.0	1	2
3	0.7	236.8	246.0	1.5	4	5
4	1.2	172.5	206.2	2.6	1	2
C2	1.4	220.6	220.6	1.4	1	2
C5	1.3	224.0	224.0	1.3	3	3
$C10^{b}$	$1.2 \ (2.1)^a$	$152.4 \ (162.5)^a$	225.9	2.2	2	4

Multiple single SC stars form dynamically within 3 Myr - likely age of bulk of R136; Andersen et al. (2009)

SC stars appear from $T_0 \approx 1 \text{ Myr}$ and tend to form equally likely over 1 - 3 Myr

Typical most massive SC star in a model $M_{\rm max} \gtrsim 200 M_{\odot}$ appearing within $T_{\rm max} < 3 \ {\rm Myr}$

Multiple SC stars co-exist close to cluster center over SC lifetime $\tau_{\rm sc} \approx 1.5~{
m Myr}$ within $T < 3~{
m Myr}$

SC stars may form with runaway velocities and escape immediately

Therefore:

It is quite plausible that a collection of dynamically-formed super-canonical stars would be observable at the center of a very young, massive starburst cluster like the RI36.

Banerjee, S., Kroupa, P. & Oh, S., 2012, MNRAS, 426, 1416

Velocity dispersion of R136

Kinematics of RI36: recent results

Hénault-Brunet et al. 2012, A&A, 546, A73 (HB et al.):

- Multiple epoch "VLT-FLAMES" spectroscopy of stars in the central zone of R136 (1 pc < R < 5 pc).
- Non-variable or single stars used to measure line-ofsight/radial velocity (V_r) - effectively "binary-corrected".
- $4 \text{ km s}^{-1} \lesssim V_r \lesssim 5 \text{ km s}^{-1}$ within 1 pc < R < 5 pc.
- Consistent with R136 in virial equilibrium at such young age (< 3 Myr).

So, did gas-expulsion happen in R136?

Gas-expulsion from embedded clusters: model

Exponential mass loss from gas+star system mimicking gas expulsion:

$$M_g(t) = M_g(0) \qquad t \le \tau_d,$$

$$M_g(t) = M_g(0) \exp\left(-\frac{(t - \tau_d)}{\tau_g}\right) \qquad t > \tau_d.$$

Representative values:

$$\tau_g = \frac{r_h(0)}{v_g}$$
$$v_g \approx 10 \text{ km s}^{-1}; \text{ sound speed in HII gas}$$

 $\tau_d \approx 0.6 \text{ Myr}$; from lifetimes of Ultra-Compact HII regions

Gas + stars follow Plummer profile: in agreement with observed ISM filaments' cross-section profiles (Malinen et al. 2012).

Gas-expulsion from embedded clusters: model

Mass-radius relation of initial embedded systems (Marks & Kroupa, 2012):

$$\frac{r_h(0)}{\text{pc}} = 0.10^{+0.07}_{-0.04} \times \left(\frac{M_{\text{ecl}}(0)}{M_{\odot}}\right)^{0.13\pm0.04}$$

Factor of 10 compact than present day young massive clusters but in good agreement with observed cross-sections of ISM filaments (e.g. Andre et al. 2011).

Star formation efficiency (SFE)
$$\epsilon pprox rac{1}{3}$$
 (e.g. Lada & Lada 2003)

Mass segregated single stars only in preliminary study, no tidal field.

Computed models. ONC-A/B from Kroupa et al. (2001)

Cluster	$M_{ m ecl}(0)/M_{\odot}$	$M_g(0)/M_{\odot}$	$r_h(0)/\mathrm{pc}$	Z/Z_{\odot}	τ_g/Myr	$ au_{ m cr}(0)/{ m Myr}$	τ_d/Myr	BSE	$\tau_{\rm vir}/{ m Myr}$
R136	1.0×10^5	$2.0 imes 10^5$	0.45	0.5	0.045	0.021	0.0, 0.6	Yes	0.9
NYC	1.3×10^4	$2.6 imes 10^4$	0.34	1.0	0.034	0.038	0.0, 0.6	Yes	2.2
ONC-A	3.7×10^3	7.4×10^3	0.45	1.0	0.045	0.23	0.6	Yes	> 10
ONC-B	4.2×10^3	8.4×10^3	0.21	1.0	0.021	0.066	0.6	Yes	≈ 3

Lower mass clusters take longer to re-virialize. $\tau_{\rm vir}$ too long for NGC 3603 Young Cluster (NYC) to be presently in virial equilibrium (c.f. Rochau et al. 2010).

NYC

An observed dynamical equilibrium state of a very young stellar cluster does not necessarily dictate that the cluster has not undergone a gas-expulsion phase.

R136 is very plausibly a re-virialized young cluster.

Banerjee, S. & Kroupa, P., 2012, ApJ (accepted)

Conclusions:

VFTS 682-like "slow runaway" VMS is common from R136-like cluster: isolated formation scenario unnecessary.

It is quite plausible that a collection of dynamically-formed supercanonical stars would be observable at the center of a very young, massive starburst cluster like the R136.

An observed dynamical equilibrium state of a very young stellar cluster does not necessarily dictate that the cluster has not undergone a gas-expulsion phase.

RI36 is very plausibly a re-virialized young cluster.

Binding energies of the initial binaries vs. primary mass showing two distinct binary distributions across $20M_{\odot}$

Mass Dependence of Runaway Stars

NYC computations

Longer re-virialization time.

Likely super-virial system at present epoch.

Consistent with propermotion measurements of Rochau et al. 2010.

Back