Super star cluster RI36: puzzles outside and inside

Sambaran Banerjee with
Pavel Kroupa and Seungkyung Oh
Argelander-Institut für Astronomie, University of Bonn

@ "Aarseth N-body meeting in Bonn" Dec. 3-5, 2012

Super-cluster RI36: a magnificent gallery of massive stars

30 Doradus (Tarantula Nebula) and RI36 cluster in the LMC. Image credit: ESO
Puzzle outside:

- Speeding massive stars (e.g. 30 Dor 016)
- "Slow runaway"s / isolated massive star formation? (e.g.VFTS 682)

Puzzle inside:

- "Monster star"s: most massive star discovered so far! ($\left.\mathrm{M} \approx 300 M_{\odot}\right)$
- RI36 in virial equilibrium. No gas expulsion?

Runaway massive stars from RI36

Puzzle outside:"slow runaway" star VFTS 682

VFTS 682 estimates
Present day mass: $150 M_{\odot}$
Projected distance: 30 pc
3D velocity: $40 \mathrm{~km} \mathrm{~S}^{-1}$
(Bestenlehner et al. 201 I)
No bow-shock detected

Another runaway: 30 Dor 016

Estimates: PD mass $90 M_{\odot}$; projected distance 120 pc ; velocity (3D) $150 \mathrm{~km} \mathrm{~S}^{-1}$ (Evans et al. 20I0, ApJ, 7I5, L74)

"Super-elastic" encounter

Hard binary \Rightarrow energy source
Launches runaway stars

Runaway OB stars

- Fast-moving Galactic-field OB stars that apparently are unrelated to any stellar assembly
- Majority of them (with known proper motions) can be traced back to a parent star cluster (e.g. Schilbach \& Röser, 2008)
- Also detectable by imaging their 'bowshocks' (Gvaramadze et al. 2010,201I)

From Gvaramadze et al., 20 II,A\&A, 535,A29

Runaway OB stars are widely believed to be former members of star clusters that received high ejection velocities in dynamical encounters

Puzzle outside:"slow runaway" starVFTS 682

VFTS 682 estimates
Present day mass: $150 M_{\odot}$
Projected distance: 30 pc
3D velocity: $40 \mathrm{~km} \mathrm{~S}^{-1}$
(Bestenlehner et al. 201 I)
No bow-shock detected

VFTS 682:"Slow runaway" from RI36
or
massive star formed alone?

Image Credit: ESO/VISTA Magellanic Cloud survey

Modeling RI36's evolution using direct N-body integration

- Initially Plummer cluster of $M_{c l}(0) \approx 10^{5} M_{\odot}$ (upper mass limit of RI36)
- Initial half-mass radius $r_{h}(0) \approx 0.8 \quad$ pc (core radius $r_{c} \lesssim 0.3$ pc observed upper limit; Mackey \& Gilmore 2003)
- Canonical IMF over $0.08 M_{\odot}<m_{s}<150 M_{\odot}$ and metallicity appropriate for LMC ($\left.Z=0.5 Z_{\odot}\right)$
- Primordial binary distribution truncated at $m_{s}=5 M_{\odot}$
- Synthetic stellar \& binary evolution by Hurley et al. $(2000,2002)$
- Complete primordial mass segregation
- Star by star N-body integration (4 models) using state-of-the-art "NBODY6" integrator aided by GPU hardware acceleration (Nitadori \& Aarseth 2012)

Model RI36: primordial binaries constrained by observations

- $m_{s}>5 M_{\odot}$ all initially in binaries, rest initially single. Truncation for computational ease; direct integration of $N \approx 1.7 \times 10^{5}$ system with 100\% primordial binaries computationally prohibitive (regularized binary orbits not yet parallelized or accelerated)
- For $m_{s}>20 M_{\odot}$ primary, uniform period distribution over $0.5<\log _{10} P($ day $)<4$ (Sana \& Evans 20II)
- For $m_{s}<20 M_{\odot}$, Kroupa (1995) birth period distribution (without pre-main-sequence evolution) over $1.0<\log _{10} P<8.43$
- Ordered pairing, thermal eccentricity distribution
- All binaries completely mass-segregated initially
- As such biggest direct N -body simulations so far with realistic (and messy) initial conditions (tight, massive, segregated primordial binaries)!!

RI36 model computation

$$
\begin{aligned}
& 0.08 M_{\odot} \leq m_{s} \leq 1.0 M_{\odot} \\
& 1.0 M_{\odot}<m_{s} \leq 5.0 M_{\odot} \\
& 5.0 M_{\odot}<m_{s} \leq 17.5 M_{\odot} \\
& 17.5 M_{\odot}<m_{s} \leq 50.0 M_{\odot} \\
& 50.0 M_{\odot}<m_{s} \leq 100.0 M_{\odot} \\
& 100.0 M_{\odot}<m_{s}
\end{aligned}
$$

Movie credit: Seungkyung Oh

VFTS 682-like slow runaways from computations

Model Number	Time t (Myr)	Mass M $\left(M_{\odot}\right)$	Distance R (pc)	Velocity V $\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$
1	2.8	256.4	31.9	27.5
2	3.2	135.9	26.6	34.8
3	2.6	126.4	27.7	45.7
4	125.9	29.9	49.4	
VFTS 682	2.6	106.9	45.7	27.3

Runaway single stars from computed models matching well with VFTS 682
VFTS 682-like "slow runaway"VMS is common from R136like cluster \Rightarrow isolated formation scenario unnecessary!

Banerjee, S., Kroupa, P. \& Oh, S. 20I2,ApJ, 746, I5
"Super-canonical" stars in RI36

Observation of "super-canonical" stars in RI36

VLT IR (Ks) image of central 3×3 pc of RI36 (inset I X I pc) showing the "super-canonical" single stars 'al','a2', 'a3' ('c' possibly a binary)
"RI36 hosts several stars whose individual masses greatly exceed the accepted $\approx 150 M_{\odot}$ stellar mass limit" Crowther et al., 2010, MNRAS, 408, 73 I.

Super-canonical stars \Rightarrow
stars with initial masses exceeding the widely accepted $\approx 150 M_{\odot}$ upper limit of stellar IMF.

How do super-canonical stars appear in RI36 ?

> Primordial formation via star formation process violating canonical $150 M_{\odot}$ upper limit

Late formation via dynamical means, e.g., dynamically induced merger of massive O-star binaries

Dense RI36 cluster is a factory of binarysingle \& binary-binary interactions inducing binary stellar mergers!

Dynamical encounters

Encounter hardening:
hard binary => energy source
"super-elastic" encounter

Model RI36: stellar evolution \& hydrodynamics

- Analytical stellar and binary evolution schemes by Hurley et al. (2000, 2002) - the SSE and BSE schemes
- Wind: only Nieuwenhuiizen \& de Jager empirical scheme for massive MS stars, transition to WR-phase not included --- wind mass loss grossly underestimated
- Idealized treatment of MS-MS collisions: (a) no mass loss (b) complete mixing (Hurley et al. 2005). Gives most massive, youngest and chemically most homogeneous merger product
- Despite limitations, best available treatments in a direct N -body model (possible effects discussed later)

Appearance of SC stars in computed models

(Spurious SC members: instant mergers of highly eccentric primordial binaries)

SC stars either remain close to cluster center or are born runaways

A more realistic stellar evolution: implications

Mass Evolution of SC stars (computed by Köhler \& Langer, 2012) for $Z \approx 0.5 Z_{\odot}$

ID hydrodynamic code by Heger et al. (2000), Petrovic et al. (2005), Yoon et al. (2006)

MS wind of Vink et al. (200I)
WR-phase for surface He abundance $Y_{s} \geq 0.7$ (Hamann et al. 1995 wind)

Fast-rotating stars

Lifetime in super-canonical phase $\left(M>150 M_{\odot}\right) \tau_{s c} \approx 1.5 \mathrm{Myr}$

Model ID	$T_{0}(\mathrm{Myr})$	$M_{0}\left(M_{\odot}\right)$	$M_{\max }\left(M_{\odot}\right)$	$T_{\max }(\mathrm{Myr})$	$\mathcal{N}_{\text {max, in }}$	$\mathcal{N}_{\text {tot }}$
1	2.6	193.9	193.9	2.6	1	2
2	$2.0(3.0)^{a}$	$155.2(181.4)^{a}$	181.4	3.0	1	2
3	0.7	236.8	246.0	1.5	4	5
4	1.2	172.5	206.2	2.6	1	2
C 2	1.4	220.6	220.6	1.4	1	2
C 5	1.3	224.0	224.0	1.3	3	3
$\mathrm{C} 10^{b}$	$1.2(2.1)^{a}$	$152.4(162.5)^{a}$	225.9	2.2	2	4

Multiple single SC stars form dynamically within 3 Myr - likely age of bulk of R136; Andersen et al. (2009)

SC stars appear from $T_{0} \approx 1 \mathrm{Myr}$ and tend to form equally likely over $1-3 \mathrm{Myr}$

Typical most massive SC star in a model $M_{\max } \gtrsim 200 M_{\odot}$ appearing within $T_{\max }<3 \mathrm{Myr}$

Multiple SC stars co-exist close to cluster center over SC lifetime $\tau_{\mathrm{sc}} \approx 1.5 \mathrm{Myr}$ within $T<3 \mathrm{Myr}$

SC stars may form with runaway velocities and escape immediately

Therefore:

It is quite plausible that a collection of dynamically-formed super-canonical stars would be observable at the center of a very young, massive starburst cluster like the RI36.

Banerjee, S., Kroupa, P. \& Oh, S., 20I2, MNRAS, 426, I4I6

Velocity dispersion of RI36

Kinematics of RI36: recent results

Hénault-Brunet et al. 2012,A\&A, 546,A73 (HB et al.):

- Multiple epoch "VLT-FLAMES" spectroscopy of stars in the central zone of RI36 ($1 \mathrm{pc}<R<5 \mathrm{pc})$.
- Non-variable or single stars used to measure line-ofsight/radial velocity $\left(V_{r}\right)$ - effectively "binary-corrected".
- $4 \mathrm{~km} \mathrm{~s}^{-1} \lesssim V_{r} \lesssim 5 \mathrm{~km} \mathrm{~s}^{-1}$ within $1 \mathrm{pc}<R<5 \mathrm{pc}$.
- Consistent with RI36 in virial equilibrium at such young age ($<3 \mathrm{Myr}$).

So, did gas-expulsion happen in RI36?

Gas-expulsion from embedded clusters: model
Exponential mass loss from gas+star system mimicking gas expulsion:

$$
\begin{array}{ll}
M_{g}(t)=M_{g}(0) & t \leq \tau_{d} \\
M_{g}(t)=M_{g}(0) \exp \left(-\frac{\left(t-\tau_{d}\right)}{\tau_{g}}\right) & t>\tau_{d}
\end{array}
$$

Representative values:

$$
\begin{aligned}
\tau_{g} & =\frac{r_{h}(0)}{v_{g}} \\
v_{g} & \approx 10 \mathrm{~km} \mathrm{~s}^{-1} ; \text { sound speed in HII gas } \\
\tau_{d} & \approx 0.6 \mathrm{Myr} ; \text { from lifetimes of Ultra-Compact HII regions }
\end{aligned}
$$

Gas + stars follow Plummer profile: in agreement with observed ISM filaments' cross-section profiles (Malinen et al. 2012).

Gas-expulsion from embedded clusters: model

Mass-radius relation of initial embedded systems (Marks \& Kroupa, 20I2):

$$
\frac{r_{h}(0)}{\mathrm{pc}}=0.10_{-0.04}^{+0.07} \times\left(\frac{M_{\mathrm{ecl}}(0)}{M_{\odot}}\right)^{0.13 \pm 0.04}
$$

Factor of 10 compact than present day young massive clusters but in good agreement with observed cross-sections of ISM filaments (e.g. Andre et al. 201I).

Star formation efficiency (SFE) $\epsilon \approx \frac{1}{3}$ (e.g. Lada \& Lada 2003)

Mass segregated single stars only in preliminary study, no tidal field.

Computed models. ONC-A/B from Kroupa et al. (200I)

Cluster	$M_{\mathrm{ecl}}(0) / M_{\odot}$	$M_{g}(0) / M_{\odot}$	$r_{h}(0) / \mathrm{pc}$	Z / Z_{\odot}	τ_{g} / Myr	$\tau_{\text {cr }}(0) / \mathrm{Myr}$	τ_{d} / Myr	BSE	$\tau_{\text {vir }} / \mathrm{Myr}$
R136	1.0×10^{5}	2.0×10^{5}	0.45	0.5	0.045	0.021	$0.0,0.6$	Yes	0.9
NYC	1.3×10^{4}	2.6×10^{4}	0.34	1.0	0.034	0.038	$0.0,0.6$	Yes	2.2
ONC-A	3.7×10^{3}	7.4×10^{3}	0.45	1.0	0.045	0.23	0.6	Yes	>10
ONC-B	4.2×10^{3}	8.4×10^{3}	0.21	1.0	0.021	0.066	0.6	Yes	≈ 3

Lower mass clusters take longer to re-virialize. $\tau_{\text {vir }}$ too long for NGC 3603 Young Cluster (NYC) to be presently in virial equilibrium (c.f. Rochau et al. 2010).

An observed dynamical equilibrium state of a very young stellar cluster does not necessarily dictate that the cluster has not undergone a gas-expulsion phase.

RI36 is very plausibly a re-virialized young cluster.

Banerjee, S. \& Kroupa, P., 2012, ApJ (accepted)

Conclusions:

VFTS 682-like "slow runaway" VMS is common from RI36-like cluster: isolated formation scenario unnecessary.

It is quite plausible that a collection of dynamically-formed supercanonical stars would be observable at the center of a very young, massive starburst cluster like the RI36.

An observed dynamical equilibrium state of a very young stellar cluster does not necessarily dictate that the cluster has not undergone a gas-expulsion phase.

RI36 is very plausibly a re-virialized young cluster.

Binding energies of the initial binaries vs. primary mass showing two distinct binary distributions across $20 M_{\odot}$

Mass Dependence of Runaway Stars

NYC computations

Longer re-virialization time.

Likely super-virial system at present epoch.

Consistent with propermotion measurements of Rochau et al. 2010.

