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“What degree of accuracy is enough?” 

(Smith 1979)

“How badly are we allowed to integrate?” 

(Heggie 1991)
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Introduction

● Phase-Space Distance, (Miller, 1964)
between 2 simulations with the same initial conditions:

δ = 0.5 log
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Introduction

● Two sources of error
● Discretization error (discrete time step size)

● Round-off error (finite number of digits)

● Exponential divergence (Goodman et al. 1993)
● Divergence away from the true solution due to 

accumulation of errors 
● Time scale of the order a crossing time
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BRUTUS
a brute force arbitrary-precision N-body code

● Two ingredients:

● Bulirsch-Stoer method 
– Tolerance parameter, Tol

● Arbitrary-Precision 

– Number of bits,  N
bits
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BRUTUS
a brute force arbitrary-precision N-body code

● Bulirsch-Stoer method 

● Leapfrog, 2nd order
● Iterative integration
● Extrapolation to zero time step size
● Tolerance parameter, Tol (= 1e-6, 1e-8, 1e-10, ...)

Control discretization error
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BRUTUS
a brute force arbitrary-precision N-body code

● Arbitrary-Precision 

● GMP, MPFR, MPFR C++

● Number of bits, N
bits

 (N
digits 

~ N
bits

/4)

● N
bits

 = 56, 64, 72, 80, 88, ... 

Control round-off error
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Brutus - Example

● N = 2, binary

● T
sim

= 100 (P=2π)

● Tol = 1e-14

● N
bits

= 88

● T
cpu

= half hour

● dE = 3e-7
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Method of Convergence

● Initial State

● Vary Tol, N
bits

 systematically

● S(Tol, N
bits

)                                           

● Convergence in N
bits

, per Tol

● S(Tol)
● Convergence in Tol

● S
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N=16 Plummer Experiment
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N=16 Plummer Experiment
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N=16 Plummer Experiment
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N=16 Plummer Experiment
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N=16 Plummer Experiment

● N = 16, Tsim = 32

● Tol = 1e-42

● N
bits

 = 200

● Ncores = 4
● Tcpu = 2.5 hours
● dE = 5e-42  



N=16 Plummer Experiment



23

N=16 Plummer Experiment
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Part 2 – Statistical Accuracy

“What degree of accuracy is enough?” 

(Smith 1979)

“How badly are we allowed to integrate?” 

(Heggie 1991)



25

N=3 Statistics

● Initial Conditions : 10k random Plummers

● Stopping Condition : Binary + Escaper

●  Integrators : LF, H4, BRUTUS

● Measure : Binary properties
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N=3 Statistics

Hermite 4th order Categories:

– = Accurate

-- = Similar

-. = Mixed
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N=3 Statistics
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Conclusions

“What degree of accuracy is enough?”

“How badly are we allowed to integrate?”
● Converged solutions can be obtained using BRUTUS

● The accuracy of conventional simulations can be 
determined by a comparison with BRUTUS

● Future studies will compare statistics of conventional and 
converged solutions in a direct way 
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Plans for the future

● Extend the BRUTUS simulations to higher N

● To provide a converged solution for a 1024-
body system through core collapse
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