Roche volume filling of star clusters in the Milky Way

Andreas Ernst, ARI Heidelberg
Aarseth N-body Meeting 2012 Bonn, Dec. 3-5, 2012

Outline

- Roche volume - what is it?
- Roche volume filling
- Resonances, Periodic orbits
- N-body simulation
- van den Bergh correlation
- Analysis of existing data sets
- Results

Star cluster in a tidal field

Galactic center
Star cluster

Jacobi radius

The Roche volume

Questions / Thoughts

- To what extent do open and globular clusters fill the Roche volume?
- What is the difference between open and globular clusters with respect to Roche volume filling?
- Jacobi radius provides a natural scale
- Another scale is given by the position/width of the main resonant island

Roche-volume filling 1

$r_{99}=0.5 r_{j}$
$r_{99}=r_{j}$
$r_{99}=2 r_{j}$
Tidal field
Total potential

Roche volume filling 2

Roche volume filling 3

$r_{g 9}=2 r_{\mathrm{J}}+$

N-body simulation

- $\mathrm{N}=50.000$
- Standard double segment Kroupa IMF
- Initially Roche volume filling

Van den Bergh (1994)

Slope $\simeq 2 / 3$

Correlation coefficients:
$0.85[\mathrm{Fe} / \mathrm{H}]<-2.0$
$0.60-2.0<[\mathrm{Fe} / \mathrm{H}]<-1.0$
$0.42[\mathrm{Fe} / \mathrm{H}]>-1.0$

Fig. 1. Cluster radius vs Galactocentric distance for globular clusters with $-2.0<[\mathrm{Fe} / \mathrm{H}]<-1.0$ (dots) and $[\mathrm{Fe} / \mathrm{H}]<-2.0$ (squares). The fiducial line is the relation $\log r_{h}(\mathrm{pc})=0.65 \log R_{\mathrm{gc}}(\mathrm{kpc})$. Clusters in both metallicity ranges appear to scatter about the same r_{h} vs R_{gc} relation.

Van den Bergh (2011)

Van den Bergh correlation

Jacobi radius (King, 1962):

$$
r_{J}^{3}=\frac{G M_{c l}}{\Omega^{2}-\frac{d^{2} \Phi}{d R^{2}}}
$$

Distance of the cluster center to the Lagrange points L_{1} and L_{2}
$\Omega, \Phi: \quad$ angular velocity, gravitational potential of the galaxy

Van den Bergh correlation

Isothermal sphere:

$$
\begin{gathered}
\Omega^{2}=\frac{L^{2}}{R^{4}} \\
L=?
\end{gathered}
$$

$$
\begin{gathered}
\Phi=V_{C}^{2} \ln \left(\frac{R}{R_{0}}\right) \\
\frac{d \Phi}{d R}=\frac{V_{C}^{2}}{R}
\end{gathered}
$$

$$
\frac{d^{2} \Phi}{d R^{2}}=-\frac{V_{C}^{2}}{R^{2}}
$$

Van den Bergh correlation

Isothermal sphere:

$$
L=V_{C} R_{P} R_{A} \sqrt{\frac{2 \ln \left(R_{A} / R_{P}\right)}{R_{A}^{2}-R_{P}^{2}}}
$$

Angular momentum of an orbit as a function of periand apocenter

Van den Bergh correlation

Jacobi radius

$$
r_{J}^{3}=\frac{G M_{c l}\left(R_{A}^{2}-R_{P}^{2}\right) R^{4}}{2 \mathrm{~V}_{C}^{2} R_{P}^{2} R_{A}^{2} \ln \left(R_{A} / R_{P}\right)+V_{C}^{2}\left(R_{A}^{2}-R_{P}^{2}\right) R^{2}}
$$

Define guiding radius $R_{g}=\frac{L}{V_{C}}$

$$
r_{J}=\left(\frac{G M_{c l}}{V_{C}^{2}}\right)^{1 / 3}\left(\frac{R^{4}}{R_{g}^{2}+R^{2}}\right)^{1 / 3}
$$

Van den Bergh correlation

Van den Bergh $(1994,2011)$

$$
r_{h} \propto R_{G C}^{2 / 3}
$$

Jacobi radius in an isothermal halo:

$$
r_{J} \propto R_{G C}^{2 / 3} \quad \text { for } R_{G C} \gg L / V_{C}
$$

These proportionalities and the assumption of an isothermal halo imply that
$\frac{r_{h}}{r_{J}}$ is independent of $R_{G C}$
for Milky Way GCs within the scatter of the correlation.

The ratio r_{h} / r_{J}

$r_{J}=\left[\frac{G M_{c l}}{\left(4-\beta^{2}\right) \Omega^{2}}\right]^{1 / 3}, \quad \beta=\frac{\kappa}{\Omega}, \quad M_{c l}=\frac{8 \pi}{3} \rho r_{h}^{3}$
for OCs: $\frac{r_{h}}{r_{J}}=\left[\frac{3\left(4-\beta^{2}\right) \Omega^{2}}{4 \pi G \rho}\right]^{1 / 3}=\left(\frac{4-\beta^{2}}{2}\right)^{1 / 3}\left(\frac{t_{\text {orb }}}{T_{\text {orb }}}\right)^{2 / 3}$
for GCs:

$$
\frac{r_{h}}{r_{J}(t)}=\left(\frac{t_{o r b}}{2 \pi}\right)^{2 / 3}\left(\frac{V_{C}^{2}}{2}\right)^{1 / 3}\left(\frac{R_{g}^{2}+R(t)^{2}}{R(t)^{4}}\right)^{2 / 3}
$$

Values for GCs and OCs

OC Parameter	Value
Sample size N_{OCs}	236
Median half-mass radius $r_{h}[\mathrm{pc}]$	1.94 ± 0.15
Median tidal radius $r_{t}[\mathrm{pc}]$	7.90 ± 0.51
Velocity dispersion $\sigma_{0}\left[\mathrm{pc} \mathrm{Myr}^{-1}\right]$	0.31
Median crossing time $t_{\mathrm{cr}, \mathrm{OC}}=r_{h} / \sigma_{0}[\mathrm{Myr}]$	6.26 ± 0.48
Average orbital period $T_{\mathrm{orb}, \mathrm{OC}}[\mathrm{Myr}]$	220 ± 30
Average eccentricity e_{OC}	0.127 ± 0.003
GC Parameter	Value
Sample size N_{GCs}	$34(38)$
Median half-light radius $r_{h}[\mathrm{pc}]$	3.13 ± 0.51
Median tidal radius $r_{t}[\mathrm{pc}]$	33.02 ± 4.83
Median velocity disp. $\sigma_{0}\left[\mathrm{pc} \mathrm{Myr}^{-1}\right]$	5.11 ± 0.64
Median crossing time $t_{\mathrm{cr}, \mathrm{GC}}=r_{h} / \sigma_{0}[\mathrm{Myr}]$	0.587 ± 0.363
Median Galactocentric radius $R_{\mathrm{Orb}, \mathrm{GC}}[\mathrm{kpc}]$	7.75 ± 0.84
Median velocity $V_{\mathrm{GC}}[\mathrm{pc} \mathrm{Myr}$	
Median orbital period $T_{\mathrm{Orb}, \mathrm{GC}}[\mathrm{Myr}]$	249 ± 18
Median angular speed $\Omega_{\mathrm{GCs}}\left[\mathrm{Myr}^{-1}\right]$	207 ± 54
Median eccentricity e_{GC}	0.0259 ± 0.0036

Samples by Piskunov et al. (2007), Dinescu et al. (1999), Harris (1996, 2010 edition)

Distr. of GC parameters

Fitting results for GCs

Table 2. Results of the fitting with analytical distribution functions and Kolmogorov-Smirnov (KS) tests. The given parameters are those of the fits/control samples.

Parameter	$\sigma_{1 D}$	Mean	Median	$P_{\mathrm{KS}}[\%]$
$r_{\mathrm{h}, \mathrm{GCs}}[\mathrm{pc}]$	1.82	2.90	2.83	4.47
$r_{\mathrm{t}, \mathrm{GCs}}[\mathrm{pc}]$	19.2	30.6	31.05	4.52
$\sigma_{0, \mathrm{GCs}}[\mathrm{km} \mathrm{s}$				
$R_{\mathrm{GCs}}[\mathrm{kpc}]$	3.07	4.90	4.66	25.48
$V_{\mathrm{GCs}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$	4.39	7.01	6.98	13.68
Parameter	σ_{2} / σ_{1}	Mean	Median	$P_{\mathrm{KS}}[\%]$
$t_{\mathrm{cr}, \mathrm{GCs}}[\mathrm{Myr}]$	0.659	0.839	0.659	43.38
$T_{\mathrm{orb}, \mathrm{GCs}}[\mathrm{Myr}]$	171	218	171	10.04
$\Omega_{\mathrm{GCs}}\left[\mathrm{Myr}^{-1}\right]$	0.0203	0.0258	0.0203	89.22

r_{h} / r_{j} and r_{t} / r_{j} for GCs and OCs

- Two distinct populations with respect to r_{h} / r_{J}
$-r_{h} / r_{j}$ of OCs is larger
- OCs: King $\mathrm{W}_{0}=2-3$
- GCs: King $W_{0}=5-6$

r_{h} / r_{j} and r_{t} / r_{J} for GCs and OCs

Ernst \& Just, submitted (2012)

r_{h} / r_{j} and r_{t} / r_{J} for GCs and OCs

Ernst \& Just, submitted (2012)

r_{h} / r_{J} and r_{t} / r_{J} for GCs and OCs

$r_{h, 2 D}=$ projected half-mass radius (OCs) or half-light radius (GCs)

Conclusions

- GCs are presently Roche volume underfilling
- In the pericenters of their orbits they might be Roche volume filling or even Roche volume overfilling
- Assumptions:
- GCs have approx. constant angular momentum in an purely isothermal halo
- Disk/Bulge contribution can be neglected

Thank you for your attention!

