Symmetries and dynamics of star clusters

Jaroslav Haas, Ladislav Šubr

Motivation: galactic nuclei

- Supermassive black hole (SMBH)
- Old spherically symmetric star cluster
 - dynamical evolution of such clusters: Peebles (1972a,b), Bahcall & Wolf (1976, 1977)...
- Massive axisymmetric gaseous torus
- Surprise: young stellar disc
 - Levin & Beloborodov (2003): Milky Way Bender et al. (2005): M31
 - dynamical evolution of such disc(s): Nayakshin et al. (2006), Cuadra et al. (2008), Löckmann et al. (2009), Šubr et al. (2009), Kocsis & Tremaine (2011)...
 - let's broaden these analyses

Part 1: Coupling of the disc and the cluster

- SMBH
 - predefined Keplerian potential (mass M_{\bullet})
- Stellar disc
 - particles $(N \sim 10^3, m \sim 10^{-6} 10^{-5} M_{\bullet}, R \in \langle R_{\rm in}, R_{\rm out} \rangle)$
 - initially thin and circular
- Spherical star cluster
 - predefined analytic potential ($M_{\rm c}(R_{\rm out}) \sim 0 1 M_{\bullet}$)
 - particles $(N \sim 10^4 10^5, R \in \langle R_{\rm in}/2, 2R_{\rm out} \rangle)$
- Numerical N-body integrator NBODY6 (Aarseth 2003)

RMS eccentricity and inclination in the disc

- Isolated disc: in accord with theoretically predicted $\propto t^{1/4}$ (dashed)
- Analytic cluster: no effect
- *N*-body cluster: accelerated evolution (Haas et al. 2012)

Eccentricity vector distribution in the cluster

- Orbits from the innermost parts of the cluster displayed ($a < 1.5 R_{in}$)
- Left: initially spherically symmetric
- Right: non-spherical structure in the evolved state

Extremely oscillating orbits in the disc

- Non-spherical structure: flattened overdensity perpendicular to the disc
- Kozai-Lidov mechanism (Kozai 1962, Lidov 1962)
- Transformation: $\Omega|_{\text{structure}} \rightarrow i|_{\text{disc}}$
- Averaging of oscillating orbits \Rightarrow accelerated growth of $e_{\rm rms}$ and $i_{\rm rms}$

Kozai-Lidov mechanism

- SMBH
 - Keplerian orbits: a , e , i , Ω , ω
- SMBH + axisymmetric perturbation
 - Kozai-Lidov oscillations of e, i and precession of $\Omega\text{, }\omega$
 - with respect to the plane of symmetry of the perturbing potential

Conclusions of part 1

- Orbital evolution of the stellar disc around the SMBH embedded in the predefined analytic spherical potential is similar to that of the isolated disc
- Initially spherically symmetric N-body star cluster develops a non-spherical structure due to the potential of the disc
- Subsequently, this structure causes extreme oscillations of e and i of the orbits in the disc
- High eccentricities are important for many astrophysical processes
 - production of hyper-velocity stars and S-stars (Löckmann et al. 2008, Bromley et al. 2012)
 - tidal disruption of stars and their feeding to the SMBH (Karas & Šubr 2007)
 - generation of gravitational waves (Berry & Gair 2012)

Part 2: Coupling of near-Keplerian orbits

- Two stars in the potential of SMBH, ring and spherical cluster
- Evolution of the orbits? (Haas et al. 2011b):

$$\frac{\mathrm{d}\cos i}{\mathrm{d}t} = -\frac{1}{mna^2} \frac{\partial \overline{\mathcal{R}}}{\partial \Omega} , \qquad \frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{1}{mna^2} \frac{\partial \overline{\mathcal{R}}}{\partial \cos i}$$
$$\overline{\mathcal{R}} = \overline{\mathcal{R}}_{\mathrm{r}} + \overline{\mathcal{R}}_{\mathrm{r}}' + \overline{\mathcal{R}}_{\mathrm{i}}$$
$$\overline{\mathcal{R}}_{\mathrm{r}} = -\frac{GmM_{\mathrm{r}}}{R_{\mathrm{r}}} \Psi \left(a/R_{\mathrm{r}}, \cos i \right)$$
$$\overline{\mathcal{R}}_{\mathrm{i}} = -\frac{Gmm'}{a} \Psi \left(\alpha, \boldsymbol{n} \cdot \boldsymbol{n}' \right)$$

• Analogic equations for the second star $i',\ \Omega'$

Integrals of motion \Rightarrow 2 modes of evolution

- Total energy
- Z-component of the total angular momentum: $m\cos i + m' \alpha^{1/2} \cos i'$
- $\overline{\mathcal{R}}$

 \Rightarrow isolines of $\overline{\mathcal{R}}$ for different masses $m,\ m'$

Numerical solutions

Generalisation for multiple stars

• Sumation over the individual stars

$$\overline{\mathcal{R}}_{\mathbf{r}} = -\sum_{k} \frac{Gm_{k}M_{\mathbf{r}}}{a_{k}} \Psi\left(a_{k}/R_{\mathbf{r}}, \boldsymbol{n}_{k} \cdot \boldsymbol{e}_{z}\right)$$
$$\overline{\mathcal{R}}_{\mathbf{i}} = -\frac{1}{2}\sum_{k \neq l} \frac{Gm_{k}m_{l}}{a_{kl}} \Psi\left(\alpha_{kl}, \boldsymbol{n}_{k} \cdot \boldsymbol{n}_{l}\right)$$

- Complex evolution in a general case
- The impact of a group of strongly interacting stars upon the rest of the system similar to that of one suitable star

Multiple stars: simple solutions

Conclusions of part 2

- We have developed a semi-analytic model for a system of N gravitationaly interacting stars in the dominating potential of the SMBH which is perturbed by an extended spherically symmetric star cluster and a distant axisymmetric source (Haas et al. 2011b)
- Mutual interaction of the stars may lead to dynamical coupling of their orbits
- In the interaction with the rest of the system, the coupled orbits effectively act as a single orbit of suitable parameters

Part 3: Innermost two parsecs of our Galaxy

- SMBH: compact radio source Sgr A^\star
 - mass $\approx 4 \times 10^6 M_{\odot}$; distance from the Sun ≈ 8 kpc (Eisenhauer et al. 2005, Gillessen et al. 2009)
- 177 young stars (Paumard et al. 2006, Bartko et al. 2009, 2010)
 - most of them \approx 0.03–0.5 pc from the SMBH; age \approx 6 Myr
 - rougly one half of these form a disc clockwise system (CWS)
 - the remaining scattered around the CWS
- Roughly spherical cluster of old stars (Schödel et al. 2007)
- Massive gaseous torus circumnuclear disc (CND)
 - radius \approx 1.8 pc; upper estimate of the mass \approx 10⁶ M_{\odot} (Christopher et al. 2005)
- CND roughly perpendicular to the CWS (Paumard et al. 2006)

Origin of the young stars?

- $\bullet~$ Tidal forces of the SMBH \Rightarrow standard star formation impossible
- Levin & Beloborodov (2003)
 - fragmentation of a self-gravitating gaseous disc \Rightarrow CWS
 - stars observed outside the CWS?
- Hobbs & Nayakshin (2009), Löckmann & Baumgardt (2009)
 - interaction of two discs (CWS, CCWS) \Rightarrow ok
 - special initial conditions needed (t_0 , i_0^{CWS} , i_0^{CCWS})
- Šubr et al. (2009)
 - spherical cluster and CND included \Rightarrow deformation of the CWS, ok
 - mutual interaction of the stars neglected
 - special initial conditions needed ($i_0^{
 m CWS} pprox$ 90°)
- Self-gravity of the stars? (Šubr 2011, Haas et al. 2011a)

Damped Kozai-Lidov mechanism

• SMBH + CND + spherical cluster

- fast rotation of $\omega \Rightarrow$ oscillations of e and i damped
- differential precession of $\boldsymbol{\Omega}$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} \propto -\frac{1+\frac{3}{2}e^2}{\sqrt{1-e^2}}a^{3/2}\cos i$$

Numerical model

- SMBH
 - predefined Keplerian potential (mass M_{\bullet})
- CND
 - massive particle ($M_{\rm CND} \sim 0.1 1 M_{\bullet}$)
- CWS
 - particles ($N \approx 200, \ m \sim 10^{-7} 10^{-5} M_{\bullet}$)
- Spherical star cluster
 - predefined analytic potential ($M_{\rm c}(R_{\rm CND}) \sim 0 1 M_{\bullet}$)
- NBODY6 (Aarseth 2003)

Angular momentum distribution in the disc

- Blue circle: initial state ($i \approx 70^{\circ}$)
- Red crosses: t = 6 Myr
- Compact group at $i \approx 90^{\circ}$ in the right panel: CWS

Application of the semi-analytic model

• Coherently evolving subset of orbits whose inclination initially increases: CWS

Conclusions of part 3

- All of the young stars in the Galactic Centre observed at distances \approx 0.03–0.5 pc from the central SMBH may have been born within a single gaseous disc (Šubr 2011, Haas et al. 2011a)
- Subsequently, these stars may have been brought to their present locations by the effects of dynamics in the combined potential of the SMBH and the CND
- Scanning of the parameter space of our numerical model reveals that the observed configuration is reproduced for parameters which are in accord with the observational constraints
- The suggested scenario is described by a simple semi-analytic model (Haas et al. 2011b)