Study of an extreme starburst cluster: different star formation or dynamical evolution?

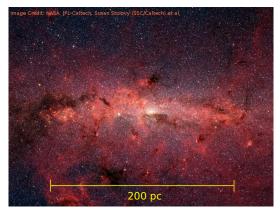
Maryam Habibi

Collaborators: A. Stolte, B. Hussman, W. Brandner

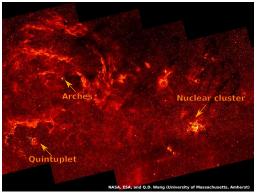
Argelander Institute for Astronomy

mhabibi@astro.uni-bonn.de

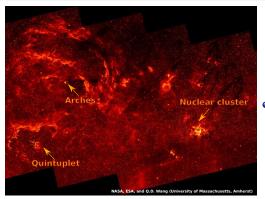
N-body meeting, Dec 4, 2012



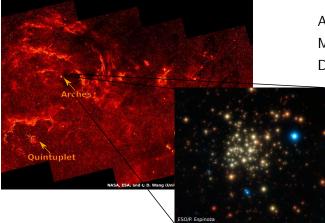
Outline


- 2 First step: study of extinction effect
- Spatial mass function variation
- Opposite a straight of the cluster

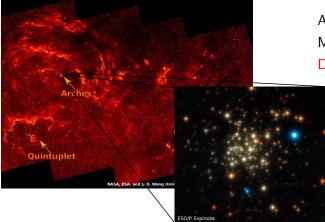
Star formation in the Galactic center


- Dense molecular clouds
- Massive-star formation
- High star formation rate
- Closest galactic nucleus

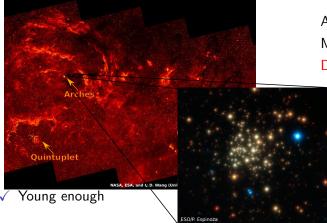
Star Forming Clusters in the GC


- Young
- Massive
- Heating nearby molecular clouds
- Flat IMF?

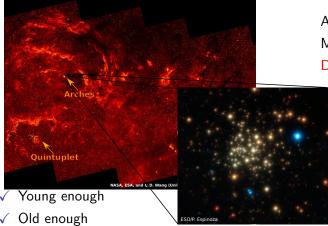
Star Forming Clusters in the GC


 Flat IMF? & claims for different star formation in GC (e.g. Klessen et al. 2007, Dib et al. 2007)

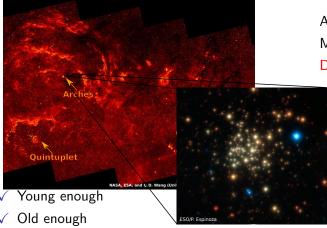
Star Forming Clusters in the GC


Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: $2x10^5 M_{\odot}/pc^3$

Star Forming Clusters in the GC

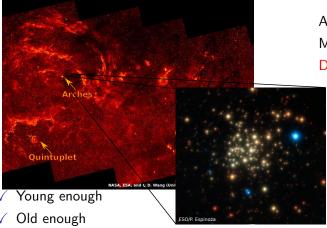

Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: $2x10^5 M_{\odot}/pc^3$

Star Forming Clusters in the GC


Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: 2x10⁵ M_{\odot}/pc^3

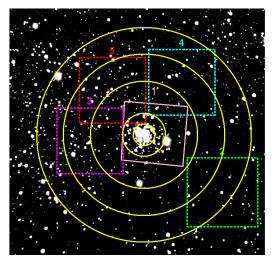
Star Forming Clusters in the GC

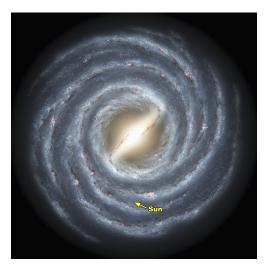
Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: $2 \times 10^5 M_{\odot}/pc^3$


Star Forming Clusters in the GC

Massive enough

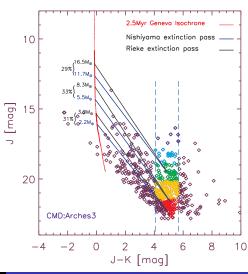
Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: $2 \times 10^5 M_{\odot}/pc^3$


Star Forming Clusters in the GC


Age: ~ 2.4 Myr Mass: 20,000 M_{\odot} Density: $2 \times 10^5 M_{\odot}/pc^3$

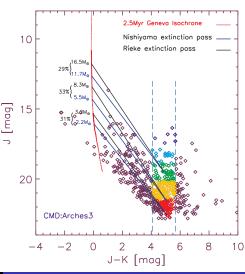
- ✓ Massive enough
 - \implies Probe IMF, high mass cut-off

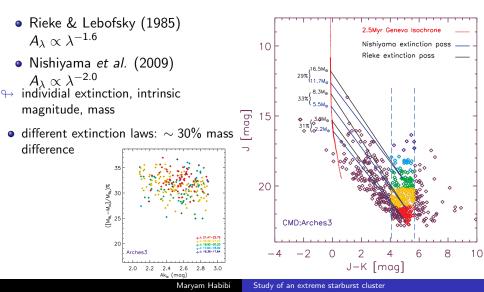
Near-infrared adaptive optic observation with VLT



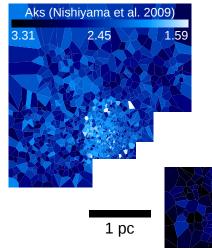
How do we see the GC?

- Through the disk
- Extincted by
 - the diffuse interstellar medium (ISM)
 - molecular cloud material
 - also through local molecular clouds

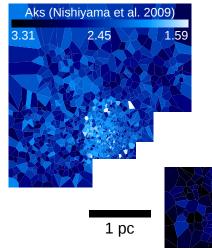

- Rieke & Lebofsky (1985) ${\cal A}_\lambda \propto \lambda^{-1.6}$
- Nishiyama et al. (2009) $A_\lambda \propto \lambda^{-2.0}$

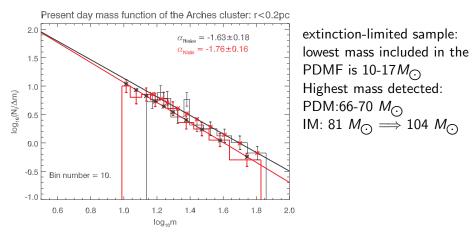


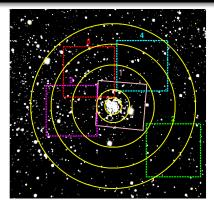
CMD


- Rieke & Lebofsky (1985) ${\cal A}_\lambda \propto \lambda^{-1.6}$
- Nishiyama *et al.* (2009) $A_{\lambda} \propto \lambda^{-2.0}$ \hookrightarrow individual extinction, intrinsic

magnitude, mass




- Rieke & Lebofsky (1985) ${\cal A}_\lambda \propto \lambda^{-1.6}$
- Nishiyama *et al.* (2009) $A_{\lambda} \propto \lambda^{-2.0}$
- ↔ individial extinction, intrinsic magnitude, mass
 - different extinction laws: \sim 30% mass difference
 - high and variable extinction: $2.8 < A_{K_s} < 4.21$ (Nishiyama)(mag)

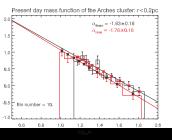


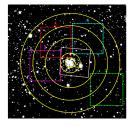
- Rieke & Lebofsky (1985) ${\cal A}_\lambda \propto \lambda^{-1.6}$
- Nishiyama *et al.* (2009) $A_{\lambda} \propto \lambda^{-2.0}$
- ↔ individial extinction, intrinsic magnitude, mass
 - different extinction laws: \sim 30% mass difference
 - high and variable extinction: $2.8 < A_{K_s} < 4.21$ (Nishiyama)(mag)

Mass function

total mass of the cluster: integrated over the mass range of 1 - 66 $M_{\odot} \Rightarrow$ $M_{cl} = (1.8^{+0.4}_{-0.3}) \times 10^4 M_{\odot}$

tidal radius of the cluster:

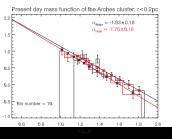

 $r_t = (\frac{M_{cl}}{2 \times M_g})^{1/3} \times r_g \simeq 1.3 - 2.5 \text{ pc}$ M_g : enclosed mass in the inner Galaxy Launhardt et al. (2002)


 r_g : Galactocentric range of 30-100 pc

Spatial mass function variation

Salepter mass function: $\alpha = -2.35$

r < 0.2 pc

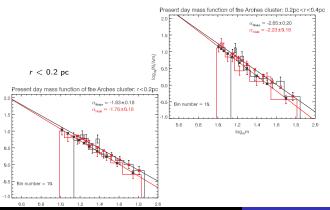

Spatial mass function variation

Salepter mass function: $\alpha = -2.35$

 $\alpha = -1.26$ Stolte *et al.*(2005)

 $\alpha = -1.88$ Espinoza et al.(2007)

r < 0.2 pc

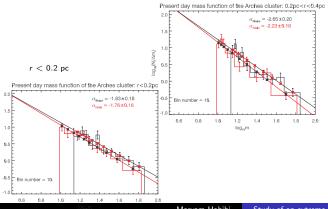


0.2 < r < 0.4 pc

Spatial mass function variation

Salepter mass function: $\alpha = -2.35$

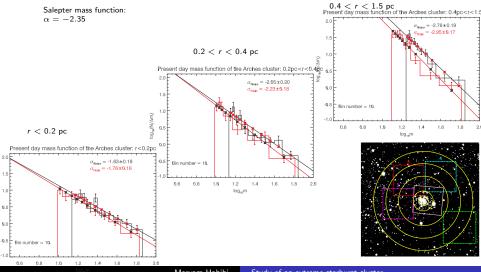
Maryam Habibi Study of an extreme starburst cluster


Spatial mass function variation


Salepter mass function: $\alpha = -2.35$

 $\alpha = -2.21$ Stolte *et al.*(2005)

 $\alpha = -2.28$ Espinoza et al.(2007)


0.2 < r < 0.4 pc

Maryam Habibi Study of an extreme starburst cluster

Spatial mass function variation

Maryam Habibi Study of an extreme starburst cluster

Dynamical evolution of the cluster

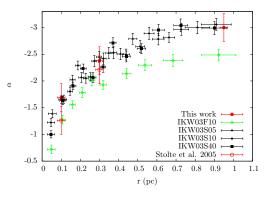
Large number of N-body simulations, Harfst et al. (2010)

List of models.

Model	W_0	IMF	$m_{\rm low}$	M_{cluster}	N_{cluster}	$N(m > 10 \mathrm{M_{\odot}})$	parameter	
			$[{\rm M}_\odot]$	$[10^3 {\rm M}_\odot]$	$[10^{3}]$		$R_{\rm vir}[{ m pc}]$	$N_{\rm MS}$
IKW03F05	3	flat	0.5	22.9	6.9	423	0.1 - 1.0	100 - 300
IKW03F10	3	flat	1.0	20.5	3.7	421	0.1 - 1.0	100 - 300
IKW03S05	3	Salpeter	0.5	52.7	31.9	552	0.1 - 1.0	100 - 300
IKW03S10	3	Salpeter	1.0	39.7	12.5	552	0.1 - 1.0	100 - 300
IKW03S40	3	Salpeter	4.0	20.6	1.9	540	0.1 - 1.0	100 - 300
IKW05F05	5	flat	0.5	22.7	6.9	413	0.1 - 1.0	100 - 300
IKW05F10	5	flat	1.0	20.2	3.7	413	0.1 - 1.0	100 - 300
IKW05S10	5	Salpeter	1.0	39.0	12.5	545	0.1 - 1.0	100 - 300
IKW05S40	5	Salpeter	4.0	20.8	1.9	543	0.1 - 1.0	100 - 300
IKW07F05	7	flat	0.5	22.9	6.9	422	0.1 - 1.0	100 - 300
IKW07F10	7	flat	1.0	20.7	3.7	421	0.1 - 1.0	100 - 300
IKW07S10	7	Salpeter	1.0	39.2	12.5	537	0.1 - 1.0	100 - 300
IKW07S40	7	Salpeter	4.0	20.8	1.9	551	0.1 - 1.0	100 - 300

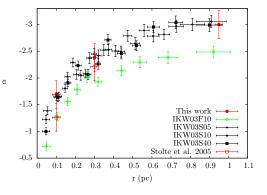
Dynamical evolution of the cluster

Large number of N-body simulations, Harfst et al. (2010)

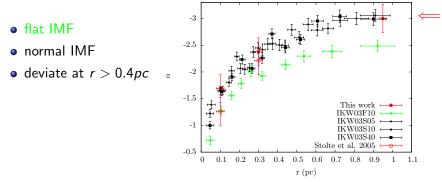

List of models.

Model	W_0	IMF	$m_{\rm low}$	M_{cluster}	N_{cluster}	$N(m > 10 M_{\odot})$	parameter	
			$[{\rm M}_\odot]$	$[10^3 {\rm M}_\odot]$	$[10^{3}]$		$R_{\rm vir}[{ m pc}]$	$N_{\rm MS}$
IKW03F05	3	flat	0.5	22.9	6.9	423	0.1 - 1.0	100 - 300
IKW03F10	3	flat	1.0	20.5	3.7	421	0.1 - 1.0	100 - 300
IKW03S05	3	Salpeter	0.5	52.7	31.9	552	0.1 - 1.0	100 - 300
IKW03S10	3	Salpeter	1.0	39.7	12.5	552	0.1 - 1.0	100 - 300
IKW03S40	3	Salpeter	4.0	20.6	1.9	540	0.1 - 1.0	100 - 300
IKW05F05	5	flat	0.5	22.7	6.9	413	0.1 - 1.0	100 - 300
IKW05F10	5	flat	1.0	20.2	3.7	413	0.1 - 1.0	100 - 300
IKW05S10	5	Salpeter	1.0	39.0	12.5	545	0.1 - 1.0	100 - 300
IKW05S40	5	Salpeter	4.0	20.8	1.9	543	0.1 - 1.0	100 - 300
IKW07F05	7	flat	0.5	22.9	6.9	422	0.1 - 1.0	100 - 300
IKW07F10	7	flat	1.0	20.7	3.7	421	0.1 - 1.0	100 - 300
IKW07S10	7	Salpeter	1.0	39.2	12.5	537	0.1 - 1.0	100 - 300
IKW07S40	7	Salpeter	4.0	20.8	1.9	551	0.1 - 1.0	100 - 300

observed mass function in the core, density in the core, number of O-B stars

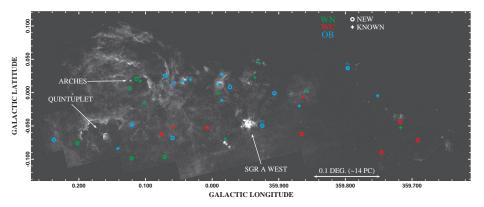

Dynamical evolution of the cluster

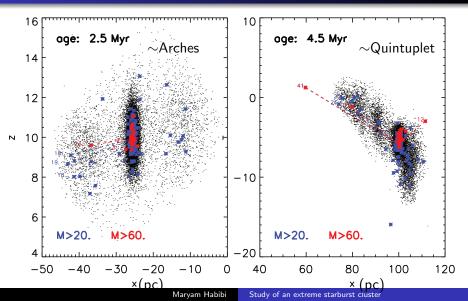
- flat IMF
- normal IMF



Dynamical evolution of the cluster

- flat IMF
- normal IMF
- deviate at r > 0.4pc


Dynamical evolution of the cluster


consistent with dynamical evolution of the cluster \Longrightarrow no top-heavy IMF is required

Isolated massive stars in the GC

Paschen-alpha survey, Mauerhan et al. (2010)

Isolated massive stars in the GC

Summary

- Assuming two commonly used extinction laws : high and variable extinction $(2 < A_k < 4)$ difference in extracted mass \longrightarrow can reach up to 30%.
- Present-day mass function of the cluster:

 $\alpha = -1.76 \pm 0.22$ in the core

 $\alpha = -2.23 \pm 0.27$ in the intermediate annulus

 $\alpha = -2.95 \pm 0.26,$ in the outer annulus.

- Comparing to Dynamical simulation of the cluster —> trend in the slope of mass function is consistent with dynamical mass segregation, no need to invoke different star formation scenario.
- To investigate the contribution of known clusters to the Galactic center environment → can explain a considerable fraction of isolated WR population in the Galactic center region.

Thank you for listening.