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400 years ago people thought that Venus is moving 
on epicycles around the earth



Epicyclic motion causes ‘overdensities‘ and 
‘underdensities‘ containing orbital information
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Analogy: consider a star cluster on a circular orbit 
about a galaxy
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An escaping star with a smaller orbital velocity will 
be on a slightly eccentric orbit
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Star clusters produce a continuous stream of stars 
while they dissolve
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The Milky Way halo is full of stellar substructure from 
dissolving Galactic satellites

Bonaca, Giguere & Geha (2012)
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Fig. 6.— The MilkyWay’s rotation curve in the range 4< R < 14
kpc as inferred from our data for different forms of the shape of the
rotation curve. At each R, the range in Vc(R) from 10,000 samples
of the PDF—assuming a power-law or cubic-polynomial model for
the shape of the rotation curve—is determined and the 68%, 95%,
and 99% intervals are shown in varying shades of gray. For the
cubic-polynomial model, we impose a prior that R0 < 9 kpc (see
text). For comparison, the squares show the rotation curve of M31
from the compilation of Carignan et al. (2006).

Vφ,! = 242+5
−17 km s−1 (for a power-law fit to the rota-

tion curve). In the latter fit, there is a strong correlation
between Vc and Vφ,!; the difference between the two is
much better constrained: Vφ,! − Vc = 23.1+3.6

−0.5 km s−1.
The marginalized PDF for Vφ,! − Vc in FIG. 5 is well-
described by Vφ,! − Vc = 26± 3 km s−1. We discuss the
consequences of this solar motion in detail in § 5.3, but
we note here that the estimate of the angular motion of
the Galactic center that we obtain from combining our
fits for Vφ,! and R0 is consistent with the proper motion
of Sgr A∗ as measured by Reid & Brunthaler (2004): our
estimate is µSgr A∗ = 6.3+0.1

−0.7mas yr−1, compared to the
direct measurement of 6.379 ± 0.024mas yr−1. We dis-
cuss the apparent discrepancy between our agreement
with the proper motion of Sgr A∗ and our low value for
Vc in § 5.3.
The final block of parameters in TABLE 2 describe

the tracer population. The velocity dispersion that we
infer for the tracer stars is close to that expected for
an old disk population: σR(R0) ≈ 32.0+0.5

−3 km s−1 for
the flat-rotation-curve and power-law fits. The ratio of
the tangential-to-radial velocity dispersions squared is
0.69 < X2 < 1.0, with the best-fit value at the lower end

of this range. This value is higher than expected from
the epicycle approximation for a flat or falling rotation
curve, which is X2 ≤ 0.5. However, this expectation
holds only for a cold disk, and corrections due to the
temperature of the old disk population always increase
X2 near R0 (Kuijken & Tremaine 1991): the Dehnen
disk distribution functions of Equation (6) have X2 that
varies spatially, and reaches approximately 0.65 near R0
(Dehnen 1999). The best-fit value for R0/hσ is approx-
imately zero, with non-zero positive values ruled out by
the data: the 68% interval is −0.24 < R0/hσ < 0.03.
Thus, the radial-velocity dispersion does not drop expo-
nentially with radius with a scale length between 2R0/3
and R0; such a drop would be expected from previ-
ous measurements of the radial dispersion as a func-
tion of R (Lewis & Freeman 1989), or from the observed
exponential decline of the vertical velocity dispersion
(Bovy et al. 2012b) combined with the assumption of
constant σz/σR. We have attempted fits with two popu-
lations of stars with different radial scale lengths (3 kpc
and 5 or 6 kpc) and radial-velocity dispersions, but the
same radial-dispersion scale length. The best-fit R0/hσ
remains zero, such that it does not seem that we are see-
ing a mix of multiple populations that conspire to form
a flat σR profile.
Even with the best-fit flat radial-dispersion profile, the

disk is stable over most of the range in R considered
here. The Toomre Q parameter—Q = σR κ/(3.36GΣ)
(Toomre 1964)—for a flat rotation curve is

Q = 1.72
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This expression has Q > 1 down to 4.9 kpc and Q = 0.91
at R = 4 kpc for a constant σR(R) and a surface den-
sity Σ ∝ e−R/(3 kpc). Although the disk is marginally
unstable in our best-fit model, this conclusion depends
strongly on the assumed radial scale length: for hR =
3.25 kpc, Q > 1 everywhere at R > 4 kpc. The flat-
ness of the inferred σR profile also depends on the as-
sumed constancy of X2. Actual equilibrium axisymmet-
ric disks, such as those having a Dehnen distribution
function (Equation (6)), have a radially-dependent X2,
with X2 at R = 4 kpc typically smaller than at R = 8 to
16 kpc (Dehnen 1999, Figure 4). AtR = 4 kpc, which for
the present data sample is only reached for the l = 30◦

line of sight, the line-of-sight velocity is entirely com-
posed of the tangential-velocity component, such that
any decrease in X2 leads to an increase in σR to sustain
the same σφ. Therefore, the true σR(R) profile presum-
ably is falling with R, and the entire disk at R > 4 kpc
should be stable in our model.
Full PDFs for all of the parameters of the basic models

discussed in this section are given in FIG. 5. It is clear
that with the exception of Vc and the derivative of the
rotation curve—β in the power-law model and dVc/dR
in the linear model—there are no strong degeneracies
among the parameters. Also included in this figure are
the results from fitting all but one of the 14 APOGEE
field for each field: these leave-one-out results show that
no single field drives the analysis for any of the parame-

Within the Galactic disk the circular velocity appears 
to be constant at about 220 km/s

Bovy et al. (2012)
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Palomar 5 is a low-mass, low-density clusters in the 
halo of the Milky Way high above the Galactic disk

‣ MV = -5.17 mag

‣ central density: 1 star/pc2

‣ Rsun = 23.5 kpc

‣ RGC = 18.6 kpc, z =16.9 kpc

‣ extremely depleted in 
low-mass stars



Palomar 5‘s tidal tails constrain its tangential motion 
on the sky
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Fig. 3.—Contour plot of the surface density of cluster candidates in galactic
coordinates ( ) overlaid with different orbital paths of the cluster ac-l cos b, b
cording to different determinations of its absolute proper motion: S93, S98,
and C98. The solid line presents our improved estimate of the orbit based on
the geometry and orientation of the tidal tails (fixing the direction of tangential
motion) and the proper motions by C98 and by S98 (estimating the tangential
velocity).

i.e., in the direction to the galactic center and anticenter. Due
to differential galactic rotation, their trajectories then bend
around and continue approximately parallel to the orbit of the
cluster. The appearance of clumps in the tails is also supported
by numerical simulations. They can be caused either by the
enhanced release of particles after strong shock events or by
caustics of the trajectories in phase space.

3.2. The Role of Contaminants

In view of the striking resemblance of the detected structures
to the expected properties of tidal tails, significant contami-
nation by clustered background objects seems a priori unlikely.
Nevertheless, we checked this point by analyzing the density
and colors of non-pointlike SDSS sources around Pal 5 that
by their shape are classified as galaxies. Their spatial distri-
bution is clumped and reveals known galaxy clusters like Abell
2050 and 2035. However, most of these sources do not fall
into the color-magnitude window for members of Pal 5. If our
selection criteria for Pal 5 members are applied to the galaxy
sample, the surface density of galaxies drops to the level of
0.3–0.6 of the field background density of the stellar sample.
Moreover, the pattern of density variations in the galaxy sample
does not correlate with the location of the tidal tails. Therefore,
objects like those in the galaxy sample are not likely to cause
significant disturbances in the stellar sample. The only re-
maining contaminants are compact galaxies with bluer colors
that may not be well represented in the sample of known gal-
axies. We believe that such objects have mostly been eliminated
by our color cut u*! mag. Finally, fluctuations in stel-∗g ≤ 0.4
lar surface density due to variable interstellar absorption can
be ruled out because the mean level of absorption in the region
around Pal 5 is low and because there is no hint for strong
variations (values of EB!V in the maps of Schlegel et al. 1998
range between 0.05 and 0.07 mag).

3.3. Implications for and from the Cluster’s Orbit

The orientation of the tails provides unique information on
the direction of the cluster’s tangential motion since it is known
that the leading and trailing parts must fit in with the inner and
outer sides of the local orbit, respectively. Figure 3 reveals that
the tails stretch out in the direction of constant b and that the
tangential motion is very likely westward (prograde rotation).
The absolute proper motions by Schweitzer, Cudworth, & Ma-
jewski (1993, hereafter S93) and S98 yield very different pre-
dictions for the local orbit, although at least the sense of rotation
is in agreement. The proper motion given by K. Cudworth (1998,
hereafter C98, unpublished revision of the work by S93, reported
in S98 and by private communication) yields a local orbit that
lies closer to the tails. From the observed orientation of the tails,
we estimate that the tangential velocity vector points∼15! north
of the line of constant b. In order to meet this constraint,
the proper motion needs to be modified by not more than
0.4 mas yr with respect to C98’s values. We thus!1

adopt mas yr for the cluster’s!1m cos b, m p !0.93, " 0.25l b

proper motion in the galactic rest frame. With these values, we
obtain an orbit (using the galactic potential of Allen & Santillan
1991) with apo- and perigalactic distances of 19.0 and 7.0 kpc,
respectively, and with disk passages at !137, !292, and
!472 Myr taking place at Galactocentric radii of 9.4, 18.4, and
8.3 kpc, respectively. Similar orbits are obtained with the more
detailed galactic potentials of Dehnen & Binney (1998). We tend
to believe that the observed overdensities close to the cluster

result from the latest disk passage, while the clumps in the tails
at distances of ∼0!.8 from the cluster might be associated with
the earlier passage through the inner disk about 470 Myr ago.
This, however, has to be investigated more thoroughly withN-
body simulations. The next passage through the galactic disk
predicted by our model orbit will be in 113 Myr and will happen
close to perigalacticon. If true, this will again produce a strong
tidal shock that may eventually dissolve the cluster completely.

3.4. Outlook

The SDSS will eventually cover a much larger region around
Pal 5 than currently available. Larger area coverage will enable
us to constrain the orbit and mass loss more tightly. We can
further constrain our model orbit by obtaining radial velocities
of stars in the tails. We predict a local radial velocity gradient
of 5.7 km s deg , i.e., an ∼9 km s difference between the!1 !1 !1

radial velocities of stars in the two tidal tail clumps. Since
Pal 5 contains very few luminous red giants, even fewer are
expected in its tails; thus, kinematic studies will have to con-
centrate on fainter stars requiring large telescopes.

The Sloan Digital Sky Survey10 is a joint project of the
University of Chicago, Fermilab, the Institute for Advanced
Study, the Japan Participation Group, Johns Hopkins Univer-
sity, the Max Planck Institute for Astronomy, New Mexico
State University, Princeton University, the US Naval Obser-
vatory, and the University of Washington. The Apache Point
Observatory, site of the SDSS telescopes, is operated by the
Astrophysical Research Consortium. Funding for the project
has been provided by the Alfred P. Sloan Foundation, the SDSS
member institutions, the National Aeronautics and Space Ad-
ministration, the National Science Foundation, the US De-
partment of Energy, Monbusho, and the Max Planck Society.

10 The SDSS Web site is located at http://www.sdss.org.

Odenkirchen et al. (2001)

l cos(b) [deg]

b 
[d

eg
]



Radial velocities constrain one additional component 
of its orbit
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Figure 2. Position of the target stars (crosses) with respect to the tidal tails of Pal 5. The cluster and its tails are shown by isopleths of color–magnitude-selected star
counts (map taken from Paper III). The coordinates of the plot are galactic longitude and latitude. The meaning of the symbols is the same as in Figure 1. The plot also
includes the targets from Paper II (∆l cos b ≈ 0.0, inside the cluster Pal 5).
(A color version of this figure is available in the online journal.)

the advantage of providing five independent velocity measure-
ments of approximately equal weight, from which one can draw
a solid estimate of the accuracy of the results. The rms devi-
ations of the individual measurements from their mean are in
the range 0.1–1.4 km s−1, depending on the quality of the spec-
tra. The velocity corrections, which are needed to transform the
measured relative velocities into heliocentric absolute veloci-
ties, were calculated with the IRAF routine RVCORRECT.

For the two standards we adopted the heliocentric veloc-
ities given by Udry et al. (1999). In Paper III these values
were found to be mutually consistent within a difference of
0.14 km s−1. Our new measurements confirm this result. We
find that the absolute velocities derived with the two different
standard stars agree within a mean difference of 0.16 km s−1 and
an rms dispersion of 0.10 km s−1. This shows that there is no sys-
tematic difference other than the small difference between the
standard stars themselves and that the individual deviations are
also small. We adopt the average of the velocities obtained with
the two standards as the best estimate of the heliocentric velocity
of each target. The repeated observation of one of the targets in
2002 and 2003 yields velocities of −56.75 and −56.79 km s−1,
respectively. This demonstrates that the results from period 1
and period 2 are highly consistent. Because of these accuracy
checks we are confident that there are no substantial systematic
errors in our measurements.

2.2. Medium-Resolution Spectroscopy

During the second observing period in 2003 we had the op-
portunity to collect simultaneously medium-resolution spectra
using GIRAFFE. We thus obtained 174 spectra for additional
targets along the RGB of Pal 5 in the same fields down to mag-
nitude 19.5 in i, covering the wavelength range from 5051 to
5831 Å at a nominal mean resolving power of R = 6000. Un-
fortunately, the majority of these spectra suffered from too low
signal-to-noise. Moreover, even those targets for which a radial
velocity could be derived, turned out to contain very few po-
tential members of Pal 5, which were not distinguishable from
nonmembers. Therefore the medium-resolution spectra were not
useful for our project. They will hence not be discussed here any
further.

3. ANALYSIS OF THE KINEMATICS

3.1. Tidal Tail Membership

The UVES spectra provide not only precise radial velocities
of the targets but also information on their stellar type. As
shown in Paper III, the line width of the Mg b triplet feature
around 5180 Å is a good indicator of the luminosity of the
star, allowing us to distinguish dwarfs (broad Mg b lines)
from giants (narrow Mg b lines). This diagnostic permits us to
clean the sample from foreground dwarf stars, which otherwise
could affect our attempt to trace the kinematics of the tidal
debris. Visual inspection of the spectra shows that despite
photometric preselection of the targets along the locus of Pal
5’s giant branch only 21 of the targets are definitely giants
whereas 40 targets turned out to be dwarfs. For the remaining
13 target stars the stellar type remains unclear because the
signal-to-noise ratio of the spectra is insufficient for a definite
classification.

The dwarfs can immediately be discarded as members of
Pal 5’s debris. The giants are plausible members, but it has
to be clarified whether they are really part of the debris or
else unrelated intervening halo stars. In Figures 1 and 2 the
giants, dwarfs, and ambiguous cases among our spectroscopic
targets are shown by different plot symbols. It can be seen
that the brightest stars of the sample are all dwarfs, i.e., in
the tails of Pal 5 we do not find any giants with magnitudes
similar to those of the brightest red giants inside the cluster.
At fainter magnitudes, however, the number of giants found
in the tails is comparable to the number of giants found in
the cluster. Thus the lack of brighter giants outside the cluster
reveals a true photometric difference between the potential
debris stars and the stellar population in the cluster (see also
Koch et al. 2004). On the other hand, we observe that among
stars with i > 17.0 the spectroscopically observed giants tend
to be concentrated toward the RGB of the cluster while the
dwarfs cover the stripe between the border lines of photometric
selection rather homogeneously. This is an important fact
because it suggests that the giants are not a random sample and
indeed comprise of members of the tidal stream of the cluster.
However, Figure 1 alone does not provide sufficiently strong
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Yet, the velocity gradient is not well constrained



There are many orbital solutions. Radial velocites 
may help to brake the degeneracy...
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Figure 7. Analogous plot to Figure 6, but comparing orbits in halo potentials with different circular velocity vc . Solid line: orbit for vc = 220 km s−1 (same as in
Figure 6). Dashed line: orbit for vc = 180 km s−1. Dashed-dotted line: orbit for vc = 150 km s−1. The tangential velocity vt of the cluster was adapted such that the
three orbits fit the location of the tidal debris on the sky equally well (see upper panel). Only for an implausibly low value of vc (see e.g., Xue et al. 2008) could the
observed velocities come close to the predictions for particles that lie exactly on the orbit.

in a potential with vc = 180 km s−1 (vt = 82 km s−1) and vc =
150 km s−1 (vt = 69 km s−1), respectively. In projection on the
sky these orbits are locally indistinguishable (see upper panel of
Figure 7), hence they fit the location of the tidal debris on the sky
equally well. The kinematics, however, are different. The radial
velocity gradient becomes smaller as the circular velocity of the
potential decreases (see lower panel of Figure 7). Together with
the observations this suggests that the circular velocity in the
Galactic halo is smaller than in the solar neighborhood.

However, in the case of vc = 180 km s−1 the radial velocity
gradient of the orbit is 3.1 km s−1 deg−1 and hence still
considerably different from the observations. In order to bring
the velocity gradient down to the level of 1 km s−1 deg−1 one
needs to decrease vc below 150 km s−1. Such a low circular
velocity would be quite extreme and difficult to reconcile with
other data on the rotation curve of the outer Galaxy (e.g., Xue
et al. 2008). Instead, it seems that variations in the Galactic
potential can at best contribute part of the solution and that
other factors also play a significant role.

4.2. Pal 5’s Distance

In contrast to the cluster’s position on the sky and its radial
velocity, which are both accurately known, the distance of the
cluster is currently not known with high accuracy. The adopted
distance estimate of 23.2 kpc is derived from photometry of
its horizontal branch stars (providing a distance modulus of
16.82 mag, Harris 1996). Taking into account photometric er-
rors and uncertainties in the determination of the absolute mag-
nitude of the horizontal branch the distance modulus probably
has an uncertainty of about 0.2 mag. Hence an error of 10% in
the distance is likely.

Figure 8. Same as in Figure 6, but testing orbits with different distances of the
cluster from the observer. Solid line: orbit for d = 23.2 kpc (same as in Figure 6).
Dashed line: orbit for d = 21.2 kpc. Dashed-dotted line: orbit for d = 19.2 kpc.
Again, the three orbits have identical projected paths on the sky (see upper panel).

In Figure 8 we compare orbits for three different distances,
one with the standard d = 23.2 kpc (solid line, same as in
Figures 6 and 7), one with d being 2 kpc smaller (long-dashed
line), and one with d being 4 kpc smaller (dashed-dotted line).
These orbits are derived using the standard potential with vc =
220 km s−1. Again, the tangential velocity of the cluster has been

Odenkirchen et al. (2009)



...but it is not straightforward to model the radial 
gradient and offset from the cluster orbit correctly 

Eyre & Binney (2010)
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Palomar 5‘s tidal tails show epicyclic overdensities 
which contain additional orbital information

to the Galactic center, that is, those points where a force bal-
ance between the internal field of the cluster and the external
tidal field exists. They are likely to pass these points with
small relative velocity because the internal velocity disper-
sion in the cluster is low, in particular in low-mass clusters
such as Pal 5 (!los < 0.7 km s!1; Paper II). Subsequently, the
debris is decoupled from the cluster and behaves like a
swarm of test particles that are radially offset from the clus-
ter and released with almost the same Galactocentric veloc-
ity vector as the cluster. In the framework of the above
model and the ideal case of zero velocity dispersion, this
means that the cluster and its debris are on confocal orbits
that are equal up to radial scaling but have different angular
velocities and thus exhibit azimuthal shear.

If the separation "’ between the azimuth angles of the
shifted and the unshifted particle (i.e., between a debris star
and the cluster) is small, the relation between "’ and the
time Dt since the release of the shifted particle can be
expressed in a simple formula. Provided that "’ is small
enough to ensure that the Galactocentric distance #R along
the orbit of the shifted particle, and hence its angular
velocity, which is L/#R2, can be considered as being
approximately constant over "’, it follows that

"’ " L

#R2
"t ¼ #! 1

#
Dt

L

R2
: ð7Þ

Here "t means the time lag that corresponds to "’, for
which equation (6) yields "t = (# ! 1)Dt. Note that
equation (7) is independent of the value of the circular
velocity vc of the potential. The relation shown in
equation (7) is very useful because it provides a key for
estimating the mass-loss rate of the cluster (see x 6).

5.2. Local Orbit and Tangential Velocity

We now describe what observational constraints we have
on the cluster’s local orbit, that is, its orbit near the present
position of the cluster and the location of its tails. Adopting
d = 23.2 kpc (Harris 1996) for the heliocentric distance of
Pal 5 and R& = 8.0 kpc for the distance of the Sun from the
Galactic center, we derive the position of Pal 5 in the Galaxy
as (x, y, z) = (8.2, 0.2, 16.6) kpc. Here x, y, and z denote
right-handed Galactocentric Cartesian coordinates, with y
being parallel to the Galactic rotation of the local standard
of rest and z pointing in the direction of the northern Galac-
tic pole. In other words, the Sun has coordinates
(!8.0, 0.0, 0.0) in this system. From the above position of
Pal 5 it follows that the inclination between the line of sight
and the orbital plane of the cluster must be '18(. On the
other hand, our view of the orbital plane cannot be entirely
edge-on, because Figure 3 clearly shows the S-shaped
bending of the tidal debris near the cluster. This feature
obviously reflects the opposite radial offsets between the
two tails and the cluster. Considering the orientation of this
S feature and the perspective of the observer, we infer that
the orbit of the cluster (in projection on the plane of the sky)
must be located east of the northern tail and west of the
southern tail (referring to the equatorial coordinate system
used in Fig. 3).

The simple model from x 5.1 tells us that the tidal debris
should be on similar orbits as the cluster if velocity
differences can be neglected. Taking into account the local
symmetry of the tidal field, the limited range in azimuth
angle ’ covered by the observations, and the relatively small

angle between the orbital plane and the line of sight, one
thus expects the offsets between the tails and the orbit of the
cluster in projection on the tangential plane of the observer
to be constant and of equal size on both sides of the cluster.
An additional argument for this assumption is that the tails
show a constant width, that is, the projection does not
reveal that they become wider as a function of angular dis-
tance from the cluster. If the mean (projected) separation
between the tidal debris and the orbit of the cluster were
increasing with angular distance from the cluster, one would
expect to see the tails become wider, which is not the case.
Therefore we continue the analysis under the assumption
that the cluster’s projected orbit runs parallel to the two
tails.

First of all, this sets a tight constraint on the direction of
the cluster’s velocity vector in the tangential plane. The tails
imply that the tangential motion of the cluster has a position
angle of 231( ) 2( with respect to the direction pointing to
the northern equatorial pole, and 280( ) 2( with respect
to Galactic north (see Fig. 8). The orientation of this angle
(i.e., P.A. = 280( and not P.A. = 100() follows when taking
into account the direction to the Galactic center. Figure 9
shows the surface density map of the tails on a grid of
Galactic celestial coordinates (l cos b, b), where l is Galactic
longitude and b Galactic latitude. Since the Galactic center
(l = 0(, b = 0() lies to the bottom of this plot, the tail that
points to the right (also called the southern tail), must be the
one at smaller Galactocentric distance, which is thus lead-
ing, and the tail that points to the left (also called the
northern tail) be the more distant one, which trails behind.
This means that the cluster is in prograde rotation about
the Galaxy, in agreement with indications from different
measurements of its absolute proper motion (Schweitzer,
Cudworth, & Majewski 1993; Scholz et al. 1998; K. M.
Cudworth 1998, unpublished, cited in Dinescu, Girard, &
van Altena 1999).

Next we consider whether the observed part of the stream
is long enough to see a deviation from straight-line motion.

Fig. 9.—Tails and local Galactic orbit of Pal 5 plotted in Galactic
coordinates (l cos b, b). Projections of four different orbits, all with tangent
toward position angle 280( at the center of the cluster, are overplotted on
the contour map of Fig. 3. Long-dashed line: Straight-line (i.e., unacceler-
ated) motion. Solid line: Locally best-fitting orbit in a radial field of
constant acceleration a = (220 km s!1)2/18.5 kpc. Here the cluster has a
tangential velocity of vt = 95 km s!1 (Galactic rest frame, but viewed from
the position of the Sun). Dashed and dash-dotted lines: Orbits in the same
field, but with vt = 110 km s!1 and vt = 80 km s!1, respectively. Note that a
logarithmic potential with circular velocity vc = 220 km s!1 instead of the
a = const field yields projected local orbits that are practically identical to
those shown above.
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Palomar 5‘s tidal tails show epicyclic overdensities 
which contain additional orbital information

to the Galactic center, that is, those points where a force bal-
ance between the internal field of the cluster and the external
tidal field exists. They are likely to pass these points with
small relative velocity because the internal velocity disper-
sion in the cluster is low, in particular in low-mass clusters
such as Pal 5 (!los < 0.7 km s!1; Paper II). Subsequently, the
debris is decoupled from the cluster and behaves like a
swarm of test particles that are radially offset from the clus-
ter and released with almost the same Galactocentric veloc-
ity vector as the cluster. In the framework of the above
model and the ideal case of zero velocity dispersion, this
means that the cluster and its debris are on confocal orbits
that are equal up to radial scaling but have different angular
velocities and thus exhibit azimuthal shear.

If the separation "’ between the azimuth angles of the
shifted and the unshifted particle (i.e., between a debris star
and the cluster) is small, the relation between "’ and the
time Dt since the release of the shifted particle can be
expressed in a simple formula. Provided that "’ is small
enough to ensure that the Galactocentric distance #R along
the orbit of the shifted particle, and hence its angular
velocity, which is L/#R2, can be considered as being
approximately constant over "’, it follows that

"’ " L

#R2
"t ¼ #! 1

#
Dt

L

R2
: ð7Þ

Here "t means the time lag that corresponds to "’, for
which equation (6) yields "t = (# ! 1)Dt. Note that
equation (7) is independent of the value of the circular
velocity vc of the potential. The relation shown in
equation (7) is very useful because it provides a key for
estimating the mass-loss rate of the cluster (see x 6).

5.2. Local Orbit and Tangential Velocity

We now describe what observational constraints we have
on the cluster’s local orbit, that is, its orbit near the present
position of the cluster and the location of its tails. Adopting
d = 23.2 kpc (Harris 1996) for the heliocentric distance of
Pal 5 and R& = 8.0 kpc for the distance of the Sun from the
Galactic center, we derive the position of Pal 5 in the Galaxy
as (x, y, z) = (8.2, 0.2, 16.6) kpc. Here x, y, and z denote
right-handed Galactocentric Cartesian coordinates, with y
being parallel to the Galactic rotation of the local standard
of rest and z pointing in the direction of the northern Galac-
tic pole. In other words, the Sun has coordinates
(!8.0, 0.0, 0.0) in this system. From the above position of
Pal 5 it follows that the inclination between the line of sight
and the orbital plane of the cluster must be '18(. On the
other hand, our view of the orbital plane cannot be entirely
edge-on, because Figure 3 clearly shows the S-shaped
bending of the tidal debris near the cluster. This feature
obviously reflects the opposite radial offsets between the
two tails and the cluster. Considering the orientation of this
S feature and the perspective of the observer, we infer that
the orbit of the cluster (in projection on the plane of the sky)
must be located east of the northern tail and west of the
southern tail (referring to the equatorial coordinate system
used in Fig. 3).

The simple model from x 5.1 tells us that the tidal debris
should be on similar orbits as the cluster if velocity
differences can be neglected. Taking into account the local
symmetry of the tidal field, the limited range in azimuth
angle ’ covered by the observations, and the relatively small

angle between the orbital plane and the line of sight, one
thus expects the offsets between the tails and the orbit of the
cluster in projection on the tangential plane of the observer
to be constant and of equal size on both sides of the cluster.
An additional argument for this assumption is that the tails
show a constant width, that is, the projection does not
reveal that they become wider as a function of angular dis-
tance from the cluster. If the mean (projected) separation
between the tidal debris and the orbit of the cluster were
increasing with angular distance from the cluster, one would
expect to see the tails become wider, which is not the case.
Therefore we continue the analysis under the assumption
that the cluster’s projected orbit runs parallel to the two
tails.

First of all, this sets a tight constraint on the direction of
the cluster’s velocity vector in the tangential plane. The tails
imply that the tangential motion of the cluster has a position
angle of 231( ) 2( with respect to the direction pointing to
the northern equatorial pole, and 280( ) 2( with respect
to Galactic north (see Fig. 8). The orientation of this angle
(i.e., P.A. = 280( and not P.A. = 100() follows when taking
into account the direction to the Galactic center. Figure 9
shows the surface density map of the tails on a grid of
Galactic celestial coordinates (l cos b, b), where l is Galactic
longitude and b Galactic latitude. Since the Galactic center
(l = 0(, b = 0() lies to the bottom of this plot, the tail that
points to the right (also called the southern tail), must be the
one at smaller Galactocentric distance, which is thus lead-
ing, and the tail that points to the left (also called the
northern tail) be the more distant one, which trails behind.
This means that the cluster is in prograde rotation about
the Galaxy, in agreement with indications from different
measurements of its absolute proper motion (Schweitzer,
Cudworth, & Majewski 1993; Scholz et al. 1998; K. M.
Cudworth 1998, unpublished, cited in Dinescu, Girard, &
van Altena 1999).

Next we consider whether the observed part of the stream
is long enough to see a deviation from straight-line motion.

Fig. 9.—Tails and local Galactic orbit of Pal 5 plotted in Galactic
coordinates (l cos b, b). Projections of four different orbits, all with tangent
toward position angle 280( at the center of the cluster, are overplotted on
the contour map of Fig. 3. Long-dashed line: Straight-line (i.e., unacceler-
ated) motion. Solid line: Locally best-fitting orbit in a radial field of
constant acceleration a = (220 km s!1)2/18.5 kpc. Here the cluster has a
tangential velocity of vt = 95 km s!1 (Galactic rest frame, but viewed from
the position of the Sun). Dashed and dash-dotted lines: Orbits in the same
field, but with vt = 110 km s!1 and vt = 80 km s!1, respectively. Note that a
logarithmic potential with circular velocity vc = 220 km s!1 instead of the
a = const field yields projected local orbits that are practically identical to
those shown above.
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We found an orbital solution that reproduces all 
observational constraints

to the Galactic center, that is, those points where a force bal-
ance between the internal field of the cluster and the external
tidal field exists. They are likely to pass these points with
small relative velocity because the internal velocity disper-
sion in the cluster is low, in particular in low-mass clusters
such as Pal 5 (!los < 0.7 km s!1; Paper II). Subsequently, the
debris is decoupled from the cluster and behaves like a
swarm of test particles that are radially offset from the clus-
ter and released with almost the same Galactocentric veloc-
ity vector as the cluster. In the framework of the above
model and the ideal case of zero velocity dispersion, this
means that the cluster and its debris are on confocal orbits
that are equal up to radial scaling but have different angular
velocities and thus exhibit azimuthal shear.

If the separation "’ between the azimuth angles of the
shifted and the unshifted particle (i.e., between a debris star
and the cluster) is small, the relation between "’ and the
time Dt since the release of the shifted particle can be
expressed in a simple formula. Provided that "’ is small
enough to ensure that the Galactocentric distance #R along
the orbit of the shifted particle, and hence its angular
velocity, which is L/#R2, can be considered as being
approximately constant over "’, it follows that

"’ " L

#R2
"t ¼ #! 1

#
Dt

L

R2
: ð7Þ

Here "t means the time lag that corresponds to "’, for
which equation (6) yields "t = (# ! 1)Dt. Note that
equation (7) is independent of the value of the circular
velocity vc of the potential. The relation shown in
equation (7) is very useful because it provides a key for
estimating the mass-loss rate of the cluster (see x 6).

5.2. Local Orbit and Tangential Velocity

We now describe what observational constraints we have
on the cluster’s local orbit, that is, its orbit near the present
position of the cluster and the location of its tails. Adopting
d = 23.2 kpc (Harris 1996) for the heliocentric distance of
Pal 5 and R& = 8.0 kpc for the distance of the Sun from the
Galactic center, we derive the position of Pal 5 in the Galaxy
as (x, y, z) = (8.2, 0.2, 16.6) kpc. Here x, y, and z denote
right-handed Galactocentric Cartesian coordinates, with y
being parallel to the Galactic rotation of the local standard
of rest and z pointing in the direction of the northern Galac-
tic pole. In other words, the Sun has coordinates
(!8.0, 0.0, 0.0) in this system. From the above position of
Pal 5 it follows that the inclination between the line of sight
and the orbital plane of the cluster must be '18(. On the
other hand, our view of the orbital plane cannot be entirely
edge-on, because Figure 3 clearly shows the S-shaped
bending of the tidal debris near the cluster. This feature
obviously reflects the opposite radial offsets between the
two tails and the cluster. Considering the orientation of this
S feature and the perspective of the observer, we infer that
the orbit of the cluster (in projection on the plane of the sky)
must be located east of the northern tail and west of the
southern tail (referring to the equatorial coordinate system
used in Fig. 3).

The simple model from x 5.1 tells us that the tidal debris
should be on similar orbits as the cluster if velocity
differences can be neglected. Taking into account the local
symmetry of the tidal field, the limited range in azimuth
angle ’ covered by the observations, and the relatively small

angle between the orbital plane and the line of sight, one
thus expects the offsets between the tails and the orbit of the
cluster in projection on the tangential plane of the observer
to be constant and of equal size on both sides of the cluster.
An additional argument for this assumption is that the tails
show a constant width, that is, the projection does not
reveal that they become wider as a function of angular dis-
tance from the cluster. If the mean (projected) separation
between the tidal debris and the orbit of the cluster were
increasing with angular distance from the cluster, one would
expect to see the tails become wider, which is not the case.
Therefore we continue the analysis under the assumption
that the cluster’s projected orbit runs parallel to the two
tails.

First of all, this sets a tight constraint on the direction of
the cluster’s velocity vector in the tangential plane. The tails
imply that the tangential motion of the cluster has a position
angle of 231( ) 2( with respect to the direction pointing to
the northern equatorial pole, and 280( ) 2( with respect
to Galactic north (see Fig. 8). The orientation of this angle
(i.e., P.A. = 280( and not P.A. = 100() follows when taking
into account the direction to the Galactic center. Figure 9
shows the surface density map of the tails on a grid of
Galactic celestial coordinates (l cos b, b), where l is Galactic
longitude and b Galactic latitude. Since the Galactic center
(l = 0(, b = 0() lies to the bottom of this plot, the tail that
points to the right (also called the southern tail), must be the
one at smaller Galactocentric distance, which is thus lead-
ing, and the tail that points to the left (also called the
northern tail) be the more distant one, which trails behind.
This means that the cluster is in prograde rotation about
the Galaxy, in agreement with indications from different
measurements of its absolute proper motion (Schweitzer,
Cudworth, & Majewski 1993; Scholz et al. 1998; K. M.
Cudworth 1998, unpublished, cited in Dinescu, Girard, &
van Altena 1999).

Next we consider whether the observed part of the stream
is long enough to see a deviation from straight-line motion.

Fig. 9.—Tails and local Galactic orbit of Pal 5 plotted in Galactic
coordinates (l cos b, b). Projections of four different orbits, all with tangent
toward position angle 280( at the center of the cluster, are overplotted on
the contour map of Fig. 3. Long-dashed line: Straight-line (i.e., unacceler-
ated) motion. Solid line: Locally best-fitting orbit in a radial field of
constant acceleration a = (220 km s!1)2/18.5 kpc. Here the cluster has a
tangential velocity of vt = 95 km s!1 (Galactic rest frame, but viewed from
the position of the Sun). Dashed and dash-dotted lines: Orbits in the same
field, but with vt = 110 km s!1 and vt = 80 km s!1, respectively. Note that a
logarithmic potential with circular velocity vc = 220 km s!1 instead of the
a = const field yields projected local orbits that are practically identical to
those shown above.
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How can we weigh the Milky Way using tidal tails of 
globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5‘s orbit using streaklines



Streaklines or streamlines are often used to visualise 
the flow of air or water around an object

Streakline is the locus of 
all the points that have 
gone through a given 
point in the flow



We can use this concept for studying trajectories of 
escaping stars within tidal tails

X



Stars escape from a cluster through the Lagrange 
points into the tidal tails

X

 Fukushige & Heggie (2000)



We release test particles from the Lagrange points 
and see where they end up after some time

X

 Fukushige & Heggie (2000)



In N-body simulations we clearly see epicyclic 
overdensities

Küpper, Lane & Heggie (2012)

x

N-body model



Our streakline model can reproduce the shape of 
the tails and the positions of the overdensities

streakline model

Küpper, Lane & Heggie (2012)

x

N-body model



Streaklines are particularly useful for clusters on 
eccentric orbits

X



N-body computations of clusters with an orbital 
eccentricity of 0.5 show complex behaviour

x

y

x

z

Simulation from Küpper, Kroupa, Baumgardt & Heggie (2010)

64k stars
eccentric orbit
Rapo = 8.5 kpc

2 kpc



Again, our simple model can reproduce the shape of 
the tails and the positions of the overdensities

Apogalacticon

Küpper, Lane & Heggie (2012)

x streakline model

N-body model



Again, our simple model can reproduce the shape of 
the tails and the positions of the overdensities

Perigalacticon

Küpper, Lane & Heggie (2012)

x

streakline model

N-body model



Again, our simple model can reproduce the shape of 
the tails and the positions of the overdensities

Between         apo- 
and peri-           
galacticon

Küpper, Lane & Heggie (2012)

x streakline model

N-body model



Again, our simple model can reproduce the shape of 
the tails and the positions of the overdensities

Between peri- 
and apogalacticon

Küpper, Lane & Heggie (2012)

x streakline model

N-body model



By adding a little scatter to the test particles we can 
emulate tidal tails

X

 Fukushige & Heggie (2000)



This method can be used to predict shapes of tidal 
tails without the need for N-body simulationsThe Tidal Tails of 47 Tucanae 5

Figure 3. The final timestep (present time) of the reference
model is shown. The black points are test particles. Due to the

manner in which they were released from the cluster,

these particles can be considered streaklines, which al-

low for a simple visualisation of the positions, at the present

time, of stars which have escaped from 47 Tuc in the re-

cent past. These have been produced by releasing test particles
from the tidal radius of the cluster (see text). The solid red curve
is the orbital path of the cluster. The current position of the clus-
ter is marked by a green cross, and its King radius as derived from
its surface density profile (see Fig. 1) is given by the green dashed
curve. Escaped stars are slowest within the epicyclic loops, which
is where overdensities will be visible.

cluster. Therefore, we will first discuss a reference model,
then we will vary single parameters to study the effect of
the changes.

Table 1 describes the parameters we have chosen for
our reference model. This reference cluster has a total final
mass of 1.0 × 106 M! and loses one star every 0.075 Myr.
Its proper motion is given by µα = 5.64 mas yr−1 and
µδ = −2.05 mas yr−1 and it has a Heliocentric distance of
4.02 kpc. We run our simulations for 1000 Myr, finishing at
the present time. We have chosen 1000 Myr as this is long
enough for the first, second and third order overdensities in
the tidal tails to become fully populated.

In Fig. 3 the streaklines of the above setup are shown.
To produce these lines we released the test particles with
exactly the angular velocity of the cluster from exactly the
Lagrange points (Eq. 4). The edge radius for this cluster
mass was found to be 158 pc, whereas the actual tidal ra-
dius of the cluster varies between 111 pc at perigalacticon
and 171 pc at apogalacticon. The epicyclic motion of the
test particles in the tails is obvious. The epicyclic loops are
strongly influenced and disturbed by the cluster mass.

In Fig. 4 the simulated tails of 47 Tuc are shown for two
different sets of escape conditions. For the ‘warm’ escape
conditions (top panel), the escaping stars retain the angular
velocity of the cluster plus they obtain a random offset in
velocity drawn from a Gaussian distribution with a FWHM
of 1 km s−1. Moreover, a Gaussian offset with a FWHM of
25% of the tidal radius has been added about the Lagrange
points so that they do not all escape from a single point
on the edge of the cluster. For the ‘hot’ escape conditions
(bottom panel in Fig. 4) we doubled the above fluctuations,
i.e. a Gaussian velocity offset with a FWHM of 2 km s−1

Figure 4. Same as Fig. 3, except with ‘warm’ (top panel) and
‘hot’ (bottom panel) escape conditions of the test particles (black
points) as described in the text. Each test particle has been given
a random spatial offset and a velocity offset at the moment of
escape. Because of these offsets the test particles no longer lie
along a smooth curve as in Fig. 3. The larger the spread in es-
cape conditions, the lower the peak density within the epicyclic
overdensities, however, the locations of the overdensities are only
negligibly affected.

and a Gaussian spatial offset with FWHM of 50% of the
tidal radius. However, from Küpper, Lane & Heggie (2012)
it is obvious that the scatter in escape conditions is in fact
not very large. Hence, the ‘hot’ escape conditions can be
regarded as the ‘worst case scenario’.

We see that adding random fluctuations to the escape
conditions of the test particles increases the width of the
tails and scatters their orbits about the ideal orbits shown
in Fig. 3. The larger the scatter in escape conditions, the
smaller the peak density in the epicyclic overdensities. How-
ever, the positions of the overdensities is not altered signifi-
cantly.

Furthermore, we have produced several simulations
to test how the uncertainty in the input parameter val-
ues affects the output of our model. For proper motion,
we produce models with µα = 4.23 mas yr−1 and µα =
7.05 mas yr−1 as well as with µδ = −1.54 mas yr−1 and
µδ = −2.56 mas yr−1. For our decreased and increased mass
models we employ a cluster mass of 0.9 × 106 M! and
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How can we weigh the Milky Way using tidal tails of 
globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5‘s orbit using streaklines



Modeling Palomar 5 involves many free parameters, 
so full N-body modeling is out of reach!

‣ Galaxy model

➡ mass of dark halo

➡ flattening/triaxiality

‣ Cluster model

➡ mass

➡ mass loss rate

‣ Orbital parameters

➡ proper motion

➡ distance

‣ Solar parameters

➡ distance to Galactic Center

➡ Solar motion
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A grid-based parameter study is still demanding 
even when using streakline models

‣ Galaxy model

➡ circular velocity between 130 - 290 km/s, spherical halo

‣ Cluster model

➡ mass between 5000 and 40,000 Msun, no mass loss

‣ Orbital parameters

➡ μαcos(δ)  &  μδ between -1.5 and -3 mas/yr, distance fixed

‣ Solar parameters

➡ fixed ➡ 238,328 models



Most important question: how to judge what a good 
model is

Küpper et al. (in prep.)



Epicyclic substructure helps us to identify the best-
fitting model

Küpper et al. (in prep.)



The streakline models help us to interpret the 
observed scatter in the velocity gradient

Küpper et al. (in prep.)



From the set of models we get a prediction for the 
proper motion

Küpper et al. (in prep.)



From the set of models we get a prediction for the 
proper motion

Küpper et al. (in prep.)



From the set of models we get a prediction for the 
proper motion

Küpper et al. (in prep.)



And we also get an estimate of the Galactic circular 
velocity at Palomar 5‘s galactocentric distance

Küpper et al. (in prep.)



Finally, we get an independent estimate of 
Palomar 5‘s mass

Küpper et al. (in prep.)



Most restricting factor is the quality of the available 
data - but there is more data to come...

QSO

stars w/
radial

velocity

WFC3 fields

ACS fields 
(in parallel)

Cycle 6
WFPC2 fields
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Fig. 6.— The MilkyWay’s rotation curve in the range 4< R < 14
kpc as inferred from our data for different forms of the shape of the
rotation curve. At each R, the range in Vc(R) from 10,000 samples
of the PDF—assuming a power-law or cubic-polynomial model for
the shape of the rotation curve—is determined and the 68%, 95%,
and 99% intervals are shown in varying shades of gray. For the
cubic-polynomial model, we impose a prior that R0 < 9 kpc (see
text). For comparison, the squares show the rotation curve of M31
from the compilation of Carignan et al. (2006).

Vφ,! = 242+5
−17 km s−1 (for a power-law fit to the rota-

tion curve). In the latter fit, there is a strong correlation
between Vc and Vφ,!; the difference between the two is
much better constrained: Vφ,! − Vc = 23.1+3.6

−0.5 km s−1.
The marginalized PDF for Vφ,! − Vc in FIG. 5 is well-
described by Vφ,! − Vc = 26± 3 km s−1. We discuss the
consequences of this solar motion in detail in § 5.3, but
we note here that the estimate of the angular motion of
the Galactic center that we obtain from combining our
fits for Vφ,! and R0 is consistent with the proper motion
of Sgr A∗ as measured by Reid & Brunthaler (2004): our
estimate is µSgr A∗ = 6.3+0.1

−0.7mas yr−1, compared to the
direct measurement of 6.379 ± 0.024mas yr−1. We dis-
cuss the apparent discrepancy between our agreement
with the proper motion of Sgr A∗ and our low value for
Vc in § 5.3.
The final block of parameters in TABLE 2 describe

the tracer population. The velocity dispersion that we
infer for the tracer stars is close to that expected for
an old disk population: σR(R0) ≈ 32.0+0.5

−3 km s−1 for
the flat-rotation-curve and power-law fits. The ratio of
the tangential-to-radial velocity dispersions squared is
0.69 < X2 < 1.0, with the best-fit value at the lower end

of this range. This value is higher than expected from
the epicycle approximation for a flat or falling rotation
curve, which is X2 ≤ 0.5. However, this expectation
holds only for a cold disk, and corrections due to the
temperature of the old disk population always increase
X2 near R0 (Kuijken & Tremaine 1991): the Dehnen
disk distribution functions of Equation (6) have X2 that
varies spatially, and reaches approximately 0.65 near R0
(Dehnen 1999). The best-fit value for R0/hσ is approx-
imately zero, with non-zero positive values ruled out by
the data: the 68% interval is −0.24 < R0/hσ < 0.03.
Thus, the radial-velocity dispersion does not drop expo-
nentially with radius with a scale length between 2R0/3
and R0; such a drop would be expected from previ-
ous measurements of the radial dispersion as a func-
tion of R (Lewis & Freeman 1989), or from the observed
exponential decline of the vertical velocity dispersion
(Bovy et al. 2012b) combined with the assumption of
constant σz/σR. We have attempted fits with two popu-
lations of stars with different radial scale lengths (3 kpc
and 5 or 6 kpc) and radial-velocity dispersions, but the
same radial-dispersion scale length. The best-fit R0/hσ
remains zero, such that it does not seem that we are see-
ing a mix of multiple populations that conspire to form
a flat σR profile.
Even with the best-fit flat radial-dispersion profile, the

disk is stable over most of the range in R considered
here. The Toomre Q parameter—Q = σR κ/(3.36GΣ)
(Toomre 1964)—for a flat rotation curve is

Q = 1.72

(

σR

32 km s−1

) (

Vc

220 km s−1

)

(

R

8 kpc

)−1 (

Σ

50M! pc−2

)−1

.

(9)

This expression has Q > 1 down to 4.9 kpc and Q = 0.91
at R = 4 kpc for a constant σR(R) and a surface den-
sity Σ ∝ e−R/(3 kpc). Although the disk is marginally
unstable in our best-fit model, this conclusion depends
strongly on the assumed radial scale length: for hR =
3.25 kpc, Q > 1 everywhere at R > 4 kpc. The flat-
ness of the inferred σR profile also depends on the as-
sumed constancy of X2. Actual equilibrium axisymmet-
ric disks, such as those having a Dehnen distribution
function (Equation (6)), have a radially-dependent X2,
with X2 at R = 4 kpc typically smaller than at R = 8 to
16 kpc (Dehnen 1999, Figure 4). AtR = 4 kpc, which for
the present data sample is only reached for the l = 30◦

line of sight, the line-of-sight velocity is entirely com-
posed of the tangential-velocity component, such that
any decrease in X2 leads to an increase in σR to sustain
the same σφ. Therefore, the true σR(R) profile presum-
ably is falling with R, and the entire disk at R > 4 kpc
should be stable in our model.
Full PDFs for all of the parameters of the basic models

discussed in this section are given in FIG. 5. It is clear
that with the exception of Vc and the derivative of the
rotation curve—β in the power-law model and dVc/dR
in the linear model—there are no strong degeneracies
among the parameters. Also included in this figure are
the results from fitting all but one of the 14 APOGEE
field for each field: these leave-one-out results show that
no single field drives the analysis for any of the parame-

In the solar neighbourhood we observe a circular 
velocity of 220 km/s

Bovy et al. (2012)



Are lower circular velocities preferred in the halo? 
Is the Galactic potential flattened?

L48 A. J. Deason et al.

Figure 4. The circular velocity profile of the Galaxy. The blue shaded region shows the 1σ constraint found in this work for our favoured tracer density profile
of DBE. The blue vertical and horizontal line filled regions indicate the additional uncertainty with systematic errors in the tracer density power-law index
of ±0.2 dex. The grey line filled region shows the profile when instead a spherical tracer density with power-law index 3.5 is used. The solid and dotted lines
indicate the maximum likelihood solutions. Constraints on the circular velocity from other studies are shown by the black error bars: McMillan & Binney
(2010) – MB10, solar neighbourhood; McMillan (2011) – M11, solar neighbourhood; Wilkinson & Evans (1999) – WE99, r = 50 kpc; Xue et al. (2008) – X08,
r = 60 kpc; Gnedin et al. (2010) – G10, r = 80 kpc; Watkins et al. (2010) – W10, r = 100 kpc. The solid/dashed red and green curves show models with dark
matter components of NFW form and a baryonic component consisting of an exponential disc with mass 5 × 1010 M" and scale length 3 kpc and a Hernquist
bulge with mass 5 × 109 M". A dark matter component with virial mass Mvir ∼ 1012 M" and concentration cvir ∼ 20 is favoured by the results of this study.

such as the Large Synoptic Survey Telescope and the planned 30-m
class of telescopes, will be of vital importance in order to tackle this
problem.
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Palomar 5



We can locally weigh the Milky Way with tidal tails of 
globular cluster by applying streakline modeling

‣ Palomar 5‘s tidal tails show epicyclic overdensities

‣ Streaklines can be used as quick models of tidal tails

‣Circular velocity at Pal 5‘s position is 170-200 km/s 


