How to weigh the Milky Way using tidal tails of globular clusters

Andreas H.W. Küpper

Argelander-
Institut
für
Astronomie

400 years ago people thought that Venus is moving

 on epicycles around the earth

Epicyclic motion causes ‘overdensities' and 'underdensities' containing orbital information

Analogy: consider a star cluster on a circular orbit about a galaxy

An escaping star with a smaller orbital velocity will be on a slightly eccentric orbit

It will move ahead of the cluster and the distance to the cluster orbit will vary periodically

It will move ahead of the cluster and the distance to the cluster orbit will vary periodically

It will move ahead of the cluster and the distance to the cluster orbit will vary periodically

It will move ahead of the cluster and the distance to the cluster orbit will vary periodically

Star clusters produce a continuous stream of stars while they dissolve

The Milky Way halo is full of stellar substructure from dissolving Galactic satellites

NORTHERN SKY

Within the Galactic disk the circular velocity appears to be constant at about $220 \mathrm{~km} / \mathrm{s}$

Within the Galactic disk the circular velocity appears to be constant at about 220 km/s

How can we weigh the Milky Way using tidal tails of globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5's orbit using streaklines

How can we weigh the Milky Way using tidal tails of globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5's orbit using streaklines

Palomar 5 is a low-mass, low-density clusters in the halo of the Milky Way high above the Galactic disk

- $M_{v}=-5.17$ mag
- central density: 1 star/pc²
- $R_{\text {sun }}=23.5 \mathrm{kpc}$
- $R_{\mathrm{GC}}=18.6 \mathrm{kpc}, \mathrm{z}=16.9 \mathrm{kpc}$
- extremely depleted in low-mass stars

Palomar 5's tidal tails constrain its tangential motion on the sky

Radial velocities constrain one additional component of its orbit

Yet, the velocity gradient is not well constrained

There are many orbital solutions. Radial velocites may help to brake the degeneracy...

...but it is not straightforward to model the radial gradient and offset from the cluster orbit correctly

Palomar 5‘s tidal tails show epicyclic overdensities which contain additional orbital information

Palomar 5‘s tidal tails show epicyclic overdensities which contain additional orbital information

We found an orbital solution that reproduces all observational constraints

How can we weigh the Milky Way using tidal tails of globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5's orbit using streaklines

Streaklines or streamlines are often used to visualise the flow of air or water around an object

We can use this concept for studying trajectories of escaping stars within tidal tails

Stars escape from a cluster through the Lagrange points into the tidal tails

Fukushige \& Heggie (2000)

We release test particles from the Lagrange points and see where they end up after some time

In N-body simulations we clearly see epicyclic overdensities

Our streakline model can reproduce the shape of the tails and the positions of the overdensities

Streaklines are particularly useful for clusters on eccentric orbits

N -body computations of clusters with an orbital eccentricity of 0.5 show complex behaviour

Again, our simple model can reproduce the shape of the tails and the positions of the overdensities

Again, our simple model can reproduce the shape of the tails and the positions of the overdensities

Again, our simple model can reproduce the shape of the tails and the positions of the overdensities

Again, our simple model can reproduce the shape of the tails and the positions of the overdensities

By adding a little scatter to the test particles we can emulate tidal tails

This method can be used to predict shapes of tidal tails without the need for N -body simulations

How can we weigh the Milky Way using tidal tails of globular clusters?

The tidal tails of Palomar 5

Streaklines - a concept from continuum mechanics

Extracting Palomar 5's orbit using streaklines

Modeling Palomar 5 involves many free parameters, so full N -body modeling is out of reach!

- Galaxy model
\Rightarrow mass of dark halo
\Rightarrow flattening/triaxiality
- Cluster model
\Rightarrow mass
\Rightarrow mass loss rate
- Orbital parameters
\Rightarrow proper motion
- distance

- Solar parameters
\Rightarrow distance to Galactic Center
- Solar motion

A grid-based parameter study is still demanding even when using streakline models

- Galaxy model
\Rightarrow circular velocity between $130-290 \mathrm{~km} / \mathrm{s}$, spherical halo
- Cluster model
= mass between 5000 and 40,000 $M_{\text {sun, }}$ no mass loss
- Orbital parameters
$\Rightarrow \mu_{\alpha} \cos (\delta) \& \mu_{\delta}$ between-1.5 and -3 mas/yr, distance fixed
- Solar parameters
\Rightarrow fixed

Most important question: how to judge what a good model is

Epicyclic substructure helps us to identify the bestfitting model

The streakline models help us to interpret the observed scatter in the velocity gradient

From the set of models we get a prediction for the proper motion

From the set of models we get a prediction for the proper motion

From the set of models we get a prediction for the proper motion

And we also get an estimate of the Galactic circular velocity at Palomar 5‘s galactocentric distance

Finally, we get an independent estimate of Palomar 5's mass

Most restricting factor is the quality of the available data - but there is more data to come...

In the solar neighbourhood we observe a circular velocity of 220 km/s

Are lower circular velocities preferred in the halo? Is the Galactic potential flattened?

We can locally weigh the Milky Way with tidal tails of globular cluster by applying streakline modeling

- Palomar 5‘s tidal tails show epicyclic overdensities

- Streaklines can be used as quick models of tidal tails

- Circular velocity at Pal 5's position is $170-200 \mathrm{~km} / \mathrm{s}$

