

S.Pfalzner & T. Kaczmarek

Result of gas expulsion depends on

Star formation efficiency

Tutukov 1978, Hills 1980, Mathieu 1980, Adams 2000, Geyer & Burkert 2001, Kroupa et al. 2001, Boily & Kroupa 2003, Bastian & Goodwin 2006, Converse & Stahler 2011 ... many more

- Duration of gas expulsion phase (rapid vs. slow)
 Lada et al. 1984
- Virial state before expulsion Aarseth 1972,...Allison & Goodwin
- Spatial distribution before expulsion (clumping, central concentration) Fellhauer & Kroupa 2005

How important is gas expulsion?

Different points of view

Lada & Lada 2003: Gas expulsion Very important!

Number counts of embedded and exposed cluster: Infant mortality: 90% of all clusters dissolve before they are 10 Myr old

Bastian (2011): Gas expulsion in clusters is not important

(multiepoch high-resolution spectroscopy NGC 3603, Westerlund 1, Arches, R136)

Schematics of gas expulsion

Bound embedded Gas expulsion: system Mixture of bour

Gas expulsion:
Mixture of bound and unbound stars

Bound cluster separated from unbound population

Lada&Lada (2003)

"only the remnants of clusters more massive than 500 M_{sun} can be detected after gas expulsion"

Schematics of gas expulsion

Bound embedded Gas expulsion: system Mixture of bour

Gas expulsion:

Mixture of bound and unbound stars

Bound cluster separated from unbound population

Young (<4Myr), massive clusters in the Milky Way

Two groups of massive young clusters (Hunter 1998, Maiz Apellaniz 2000, Pfalzner 2009) 0.1-0.8pc

Identification	distance [pc]	age [Myr]	$\frac{\log(M_c)}{[\mathrm{M}_\odot]}$	size [pc]	$log(\rho_c)$ $[M_{\odot}pc^{-3}]$
Arches ¹	8 +1	2-2.5	4.3	$0.19^{+0.03}_{-0.03}$	5.6 +1
NGC 3603 ¹	7.6^{+1}_{-1}	2-2.5	4.1	$0.3^{+0.04}_{-0.04}$	5.0 +0.1
Trumpler 14 ¹	$2.8^{+0.6}_{-0.2}$	12	4.0	$0.5^{+0.1}_{-0.04}$	4.3 +0.05
Westerlund 2 ¹	2.8	1.5-2.5	4.0	0.8	3.7

0.1-0.8pc Starburst clusters

CYg OB23	$1.74^{+0.2}_{-0.5}$	1-4	4.4	5.2 +8.06	1.61 +0.02
NGC 6611 ³	$1.995^{+0.01}_{-0.25}$	1-5	4.4	5.9 +0.1	$1.45^{+0.22}_{0.11}$
NGC 2244 ³	$1.88_{-0.4}$	1-3	3.9	5.6 -1.2	1.03 +0.33
IC 1805 ³	$2.34^{+0.1}_{-0.1}$	1-3	4.2	$7.1_{-0.3}^{+0.3}$	0.98 +0.03
Ori Ib ³	$0.363^{+0.2}_{-0.2}$	1.7	3.6	6.3 +0.3	$0.55^{+0.11}_{-0.02}$
NGC 7380 ³	3.73	2	3.8	6.5	0.72

5-7 pc
OB associations

Size at onset of gas expansion probably < or << 5pc

Massive Clusters in the Milky Way

Two distinctly
Different sizes
for
Starburst and
OB/leaky clusters

This difference increases with cluster age

Two groups

Two sequences in

- Milky Way
- Local Group
- Outside

Portegies-Zwart et al. ARAA 2010

Young (<4Myr), massive clusters in the Milky Way

Two groups of massive young clusters (Hunter 1998, Maiz Apellaniz 2000, Pfalzner 2009) 0.1-0.8pc

Identification	distance [pc]	age [Myr]	$\frac{\log(M_c)}{[\mathrm{M}_\odot]}$	size [pc]	$\frac{\log(\rho_c)}{[\mathrm{M}_{\odot}\mathrm{pc}^{-3}]}$
Arches ¹	8 +1	2-2.5	4.3	$0.19^{+0.03}_{-0.03}$	5.6 +1
NGC 3603 ¹	7.6^{+1}_{-1}	2-2.5	4.1	$0.3^{+0.04}_{-0.04}$	5.0 +0.1
Trumpler 14 ¹	$2.8^{+0.6}_{-0.2}$	12	4.0	$0.5^{+0.1}_{-0.04}$	4.3 +0.05
Westerlund 2 ¹	2.8	1.5 - 2.5	4.0	0.8	3.7

O.1-0.8pc Starburst clusters

CYg OB2 ³	$1.74^{+0.2}_{-0.5}$	1-4	4.4	5.2 +3.06	1.61 +0.02
NGC 6611 ³	$1.995^{+0.01}_{-0.25}$	1-5	4.4	5.9 +0.1	$1.45^{+0.22}_{0.11}$
NGC 2244 ³	$1.88_{-0.4}$	1-3	3.9	5.6 -1.2	1.03 +0.33
IC 1805 ³	$2.34^{+0.1}_{-0.1}$	1-3	4.2	$7.1_{-0.3}^{+0.3}$	0.98 +0.03
Ori Ib ³	$0.363^{+0.2}_{-0.2}$	1.7	3.6	6.3 +0.3	$0.55^{+0.11}_{-0.02}$
NGC 7380 ³	3.73	2	3.8	6.5	0.72

5-7 pc
OB associations

Size at onset of gas expansion probably < or << 5pc

Gas expulsion in massive clusters: theory vs observations

Pfalzner & Kaczmarek

Simulation parameters:

- 30 000 stars,
- IMF
- King profile(W = 9)
- Half-mass radius: 1.3 pc
- 15-20 realizations (error < 3%)
- · Nbody6gpu
- Difference between dynamical and true mass
- > SFE < 30% Massive expansion Most of mass lost
- > SFE > 30% small change in cluster size clusters retain a large portion of their mass

Schematics of gas expulsion

Bound embedded Gas expulsion: system Mixture of bour

Gas expulsion:

Mixture of bound and unbound stars

Bound cluster separated from unbound population

Observed cluster size?

Observed cluster size depends to some extend on observational method used

(cluster membership, velocity data etc.

Here

- initially stars within 20 pc
- later size of the bound remnant
- in between: interpolation

Mass vs radius

Observed massive cluster sequence corresponds to 30% SFE

Corresponds to estimates of maximum SFE from gas content in embedded clusters in solar neighbourhood

Density vs radius

Clusters with 20% and less SFE would be diffcult to detect at $t_c > 10 \text{Myr}$

Is the cluster sequence a selection effect of the clusters with high SFEs?

>27% of massive clusters follow this sequence

Initial radius

Size at onset of Gas expulsion

1-3 pc

Initial cluster mass

Clusters with $M_{initial} < 10~000~M_{sun}$ not observed at $t_c > 10Myr$

>53% of clusters with M > 10 000 M_{sun} follow observed sequence

Gas expulsion in leaky clusters

- Size at onset of gas expulsion: 1-3pc
- Full cluster expansion currently only observable for M>10 000 M_{sun}
- At least 53% of clusters with M > 10 000
 M_{sun} follow observed sequence
- Form mostly with ~30% SFE
- A single massive OB associations feeds 15000-25000 stars within 10-20Myr into the field population
- Remnant: cluster consisting of ~1000-3000 stars within 20pc - leaky cluster

Massive clusters (<4Myr) in the Milky Way

Two groups of massive young clusters (Hunter 1998, Maiz Appeliz 2000, Pfalzner 2009)

Identification	distance [pc]	age [Myr]	$\frac{\log(M_c)}{[\mathrm{M}_{\odot}]}$	size [pc]	$log(\rho_c)$ $[M_{\odot}pc^{-3}]$
Arches ¹ NGC 3603 ¹	8^{+1}_{-1} 7.6^{+1}_{-1}	2-2.5 2-2.5	4.3	$0.19^{+0.03}_{-0.03}$	5.6 ⁺¹ 5.6 ⁺¹ 5.6 +0.1
Trumpler 14 ¹	$2.8^{+0.6}_{-0.2}$	i ²	4.1	$0.3^{+0.04}_{-0.04}$ $0.5^{+0.1}_{-0.04}$	5.0 ^{+0.1} _{-0.1} 4.3 ^{+0.08} _{-0.3}
Westerlund 2 ¹	2.8	1.5 - 2.5	4.0	0.8	3.7

0.1-0.8pc Starburst clusters

CYg OB23	$1.74^{+0.2}_{-0.5}$	1-4	4.4	5.2 +0.06	$1.61^{+0.02}_{-0.4}$
NGC 6611 ³	$1.995^{+0.01}_{-0.25}$	1-5	4.4	$5.9^{+0.1}_{-0.8}$	$1.45^{+0.22}_{0.11}$
NGC 2244 ³	$1.88_{-0.4}$	1-3	3.9	$5.6_{-1.2}$	1.03 +0.33
IC 1805 ³	$2.34^{+0.1}_{-0.1}$	1-3	4.2	$7.1_{-0.3}^{+0.3}$	0.98 +0.03
Ori Ib ³	$0.363^{+0.2}_{-0.2}$	1.7	3.6	6.3 +0.3	$0.55^{+0.11}_{-0.02}$
NGC 7380 ³	3.73	2	3.8	6.5	0.72

5-7 pc
OB associations

Starburst clusters: radial expansion

Simulation parameters:

Cluster members 30 000 stars

Cluster mass: 15 000 Msun

Initial size: 0.1pc

Profile: King W=9

IMF Kroupa (2001)

Size treated in same way as before

Starburst: Mass vs Radius

Star burst cluster sequence corresponds to 60-70% SFE

Density vs Radius

Clusters with SFE<50% not observable for t>5-10Myr

At least 40% of starburst clusters follow sequence

SFE 60-70%

Higher SFEs close to Galactic Center and spiral arms?

Or

Do we observe only central part of very young starburst result

Ejection loss as driver for expansion

OB/Leaky clusters: 5-8% loss by ejection

Starburst clusters: 20 % loss by ejection

Driving force befind Cluster expansion

Gas expulsion in Starburst clusters

- Size at onset of gas expulsion: 0.1 0.2 pc
- Encounters become important for cluster expansion
- at least 40% of clusters follow observed sequence
- Form mostly with ~ 60 70% SFE

Summary

- Observed sequences show the development after gas expulsion process
- At least 53% of OB associations/leaky clusters have 30% SFE
- At leats 40% of starburst clusters have 60-70% SFE
- Gas expulsion dominates OB association/leaky cluster dynamics
- Gas expulsion less important for starburst clusters, here encounter dynamics dominates