
BoA User Manual : APEX-MPI-MAN-0018

Version: 1.11 (02.08.2006)

Authors: A. Beelen, F. Bertoldi, R. Schaaf, F. Schuller, C. Vlahakis, et al.

BoA – The Bolometer Data Analysis Project

User and Reference Manual

Purpose

The purpose of this document is to provide an overview on the design and usage of the Bolometer Analysis
(BoA) software package that was designed for the Large APEX Bolometer Camera (LABOCA) at APEX.

1

Copyright © 2003 – 2006 MPIfR, AIfA, AIRUB

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2

Document history

Revision Date Author Sections/Pages affected Remarks

Internal document history

Revision Date Author Sections/Pages affected Remarks

v1.9 30.07.06 CV all version prepared for official approval
v1.10 01.08.06 CV all minor changes only
v1.11 02.08.06 CV initial pages Document history, Related documents, and

Definintions added

Related documents

RD-01 BoA User’s manual
RD-02 LABOCA design description, APEX-MPI-DSD-0016
RD-03 Muders, Hafok, Wyrowski et al., 2006, A&A in press
RD-04 The BoA Project: definition, F. Bertoldi et al. (June 2002)
RD-05 A future bolometer data analysis software: requirements and definition, F. Bertoldi et al.

(June 2002)
RD-06 Initial BoA web site: http://www.openboa.de
RD-07 LABOCA wiki: http://www.astro.uni-bonn.de/ abeelen/labocawiki

Definitions

For the following acronyms the understanding shall be:

AIfA Argelander Institut für Astronomie der Universität Bonn
AIRUB Astronomisches Institut der Ruhr-Universität Bochum
APECS APEX Control Software
APEX Atacama Pathfinder Experiment
ASZCa APEX SZ Camera
BoA Bolometer Array Analysis Package
BoGLi BoA Graphics Library
LABOCA Large APEX Bolometer Camera
MAMBO Max-Planck Millimeter Bolometer
MBfits Multi-beam fits format
MPIfR Max-Planck-Institut für Radioastronomie, Bonn
MOPSIC MAMBO data reduction software
NIC IRAM bolometer reduction package
SURF SCUBA data reduction software

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

ToDo List

This is the latest organisational structure of the manual, and listed under each "chapter" are the jobs to be
done:

• 0) ABSTRACT - write

• PART I: USER’S MANUAL

– 1) INTRODUCTION

- write opening short para
- check content of existing text
- build on content of existing text if necessary

– 2) INSTALLATION

- complete list of prerequisites, including any differences for different OS
- description of where to get the install.sh script
- description of any other installation method (other than using install.sh), if there is to be

any
- full installation instructions, including any differences for different OS
- list of known installation problems for each OS
- section on how to update existing BoA installation

– 3) OVERVIEW OF BoA STRUCTURE

- I think this chapter should give just a basic overview of the structure of BoA, perhaps
referring the the structure charts/lists given in the new appendices, so that this chapter is
accessible to EVERY reader.

- I’ve left this section as it was previously, so that means that a lot of the content should no
longer go in this chapter, but instead I suggest moving it to chapter 6 - chapter 6 will then
include more in-depth/technical information as well as development information, which
will be of interest to more advanced users but not for everyone.

- nonetheless, make sure this existing material is up-to-date before shifting it around

– 4) and 5) QUICK AND DETAILED USER GUIDES

- make sure is clear, ordered in an easy to follow way, and up-to-date
- these, and some of the following, chapter should make up the "cookbook"

– 6) BoGLi

- make sure is clear, ordered in an easy-to-follow way, and up-to-date

• PART 2: REFERENCE MANUAL

– 7) DATA ORGANISATION

- I think this chapter should include all the "too-technical" stuff chucked out from Ch.3

4

- MBFITS / DATA STORAGE / I/O etc. now included in this chapter
- add here more detailed info on how MBFITS works, how we store the data, input/output

etc etc.
- a brief and simple description should also be included in Chapter 5 (Detailed User Guide)

– 8) DEVELOPMENT

- re-write/make up-to-date

• PART 3: ALL BoA CLASSES AND FUNCTIONS

- the appendices, generated by Doxygen

- document any remaining undocumented items (there are quite a few)

Who should do what?

This is the current plan:

• Abstract & Intro (0 &1) — FRANK

• Installation (2) — DIEGO & REINHOLD

• BoA structure (3) — FREDERIC & ALEXANDRE

• User guides (4, 5 & 6) — CAT

• Data org (7) — FREDERIC, ALEXANDRE, REINHOLD, FRANK

• Development (8) — FREDERIC, ALEXANDRE, REINHOLD, FRANK

• Part III — CAT

• HTML version — CAT

Status so far

• 0 & 1 need writing

• 2 Diego has updated the doc to match the info that Reinhold put on the Wiki. I made some further
changes. Diego and Reinhold: can you get together and see what else you might be able to add there?

• 4,5 &6 I need to do final testing of examples with up-to-date BoA

• 3 & 7 Frederic has been working on these chapters and made some re-arrangemtns to the structure
of Part 2. Frederic, Alex, Reinhold and Frank: can you figure out between you what else needs to go
into these chapters?

• 8 needs writing. Frederic, Alex, Reinhold and Frank: as above.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5

Notes:-

- It’d be really helpful if we try to keep the Wiki updates in synch with the manual. So, next time you
write something on the Wiki, have a quick think whether it’s something we could use in the manual,
and if so, please just copy and paste it in to an appropriate place in the manual!

- Some of the chapters could be more or less written in final format right away (e.g. abstract, intro),
while others will need to be added to over the next few weeks/months (e.g. installation), so please
bear this in mind - whoever is working on a particular chapter should be responsible for making sure
it is updated as soon as something new comes along!

- Either way, we should aim to get something of each chapter written up as soon as possible.

- Please use the definitions BoA and BoGLi if you want to write BoA or Bogli.

- Note that this version is latex-only (I’ve removed the previous html-only stuff and will re-introduce
it later). I will deal with producing the html version, but in the meantime if you have have something
you desperately want to include only in the html version then let me know.

- Finally, note that I’ve cut out a lot of stuff from the "pre-doxygen" version of the documentation, but
some of those basic ideas may still be necessary...so when you’re working on your chapter please
have a look through this "old" version (the one you’ll find called boa_master_doc.pdf in your current
BoA installation) and check there’s nothing important I’ve cut out. Also note that if I cut something
out in the first place I did so for a reason, so if you’re re-including something please make sure it’s
relevant, up-to-date, and re-worded in a clear and concise way!

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

Contents

I User’s Manual 1

1 Introduction 2

1.1 Philosophy and basic structure . 3

2 Installing BoA 5

2.1 Prerequisites . 5

2.2 Obtaining the installation script and packages . 5

2.3 Installation using the install.sh script . 6

2.4 Resuming an incomplete installation . 8

2.5 Installation FAQ . 9

2.6 Updating BoA . 9

3 Overview of BoA structure 11

3.1 Input data . 11

3.2 Internal data handling . 11

4 Basic outline of BoA usage 13

4.1 Starting up BoA . 13

4.2 Some useful BoA commands . 13

5 BoA User Guide 15

5.1 Overview of how to use BoA . 15

5.2 User methods for data reduction and map making . 17

5.3 User methods for file reading . 18

5.4 User methods for controlling graphics display devices . 18

5.5 User methods for displaying data . 19

5.6 MB-Fits to FITS file conversion . 22

5.7 Scripts . 22

5.8 Commands in alphabetical order . 24

5.9 Commands in functional order . 27

CONTENTS ii

5.10 Abbreviations . 30

6 BoGLi : the BoA Graphic Library 32

6.1 Introduction . 32

6.2 Command handling . 32

6.3 Device handling . 33

6.4 Plotting graphics . 35

6.5 Keywords . 43

II Reference Manual 45

7 Data Organisation 46

7.1 Data input: the MB-FITS format . 46

7.2 BoA Data objects . 47

7.3 Data output . 51

8 Development 52

8.1 Basic programming rules . 52

8.2 Adding classes . 52

8.3 Adding methods . 52

8.4 Adding Fortran90 code . 52

8.5 Interfacing . 55

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

Part I

User’s Manual

1. INTRODUCTION

The Atacama Pathfinder Experiment (APEX)1 is a 12-meter radio telescope at the best accessible site for
submillimeter observations, Llano de Chajnantor in Chile’s Atacama desert.

Figure 1.0.1: The APEX telescope at Chajnantor in November 2003

LABOCA is a 295-channel facility bolometer camera for APEX. It operates in the 870 µm atmospheric
window and is to be commissioned in September 2006. It was built at the MPIfR bolometer lab by Dr.
Ernst Kreysa and his staff.

BoA is a newly designed software package for the reading, handling, and analysis of bolometer array data.
Its design and implementation is a collaborative effort of scientists at the MPIfR, AIfA and AIRUB that
was started in 2002 and in part funded through a "‘Verbundforschung"’ grant to the MPIfR and RAIUB.
BoA is an APEX facility software as part of the LABOCA instrument. The primary goal of BoA is to
handle data from LABOCA at APEX, both for online visualization and offline processing. BoA could also
be used to process data acquired with other instruments such as ASZCa at APEX or MAMBO at the IRAM
30-meter telescope. BoA includes most of the relevant functionalities of the current reduction packages
(MOPSIC, NIC, SURF). The major difference is that BoA is written in a programming environment that
is easier to modify, maintain, and re-use. Moreover, BoA naturally interfaces with APECS and the MBfits
format.

1http://www.mpifr-bonn.mpg.de/div/mm/apex/

http://www.mpifr-bonn.mpg.de/div/mm/apex/

1.1. PHILOSOPHY AND BASIC STRUCTURE 3

1.1 Philosophy and basic structure

1.1.1 Philosophy

BoA is designed with two major goals in mind: to provide a comprehensive tool for the reduction and anal-
ysis of data from the new generation of bolometer arrays, and to facilitate the extension and modification
of the software by any user. BoA is intended to combine a simple and intuitive usage with the coverage of
all aspects of data reduction, from raw data to final images. The natural choice for the creation of BoA is
object oriented programming.

1.1.2 Programming language: Python

Most of BoA is written in Python, an interpreted, interactive and object-oriented programming language.
Python does not adhere to all concepts of object-orientation as strictly as, e.g., C++ does. The resulting
shortcomings can be overcome by sticking to some basic programming rules.

Python is a scripting language and as such allows BoA to be quickly and easily extended by the user. It
also facilitates the wrapping of code written in C/C++ or FORTRAN. To improve execution speed, BoA
computing-intensive tasks are therefore written in Fortran95.

1.1.3 Basic structure

BoA consists of a set of classes, most of which are defined in dedicated modules (files). In addition, a few
functions are defined in separate modules. A detailed description of all classes and methods can be found
in Sec. 3. The subdivision was chosen to reach a high modularity and an intuitive grouping of related
functionalities within one class.

Two kinds of classes may be distinguished:

• Data classes: The DataEntity class defines the data structure which is used within BoA . Objects
of this class contain the raw and reduced data and all relevant parameters of a single scan. This
class also defines methods to fill the data object from an MBFITS file. Then, the DataAna class
inherits from DataEntity: it contains all data related methods, plus some methods for data analysis
(e.g. flagging, baseline). Then, the Map class inherits from DataAna: it contains all methods defines
in DataEntity and DataAna, plus specific methods for map processing and display. Finally, classes
dedicated to various observing modes inherit from the Map class: they contain additional methods
specific to a given type of observation. Table 1.1 lists BoA data classes, with module names and
short descriptions of their responsibilities.

• Peripheral classes: All other classes provide methods which either are used by data objects (e.g.
Image is used within Map objects), or provide functionalities on the BoA level (e.g. MessHand).
These classes are summarized in Table 1.2.

Finally, a few functions are defined in separate modules (listed in Table 1.3), which do not define any
class. Thus, these functions can easily be imported and run from any level. In particular, the BoA Graphic
Library (BoGLi) is defined in a collection of modules, which can be imported at the python level and do
not require BoA . A description of BoGLi is given in Sect. 6.

In addition, a number of utility and computing routines are written in Fortran modules. These routines are
used within Python methods, and should in principle not be called directly by a BoA user.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

1.1. PHILOSOPHY AND BASIC STRUCTURE 4

Table 1.1: BoA data classes
class name module purpose

DataEntity BoaDataEntity.py data and parameters storage
DataAna BoaDataAnalyser.py general data analysis methods
Map BoaMapping.py map reduction

Focus BoaFocus.py focus reduction
Point BoaPointing.py pointing reduction
Sky BoaSkydip.py skydip reduction

Table 1.2: Other BoA classes
class name module purpose

Image BoaMapping.py image and axis description
Error BoaError.py
Help BoaHelp.py online help
MessHand BoaMessageHandler.py message handling
MamboMBFits MamboMBFits.py MAMBO to/from MB-Fits conversion
Timing Utilities.py benchmarking utilites

Table 1.3: Other BoA modules
module name purpose

BoGLi (see Sect. 6) Graphic library
Utilities.py (see Sect. ??) collection of utilities
BoaConfig.py (see Sect. ??) global parameters definitions
BoaSimulation.py LABOCA data simulator

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2. INSTALLING BoA

This section describes how to install BoA and all required additional software packages, as well as how to
update an existing BoA version.

2.1 Prerequisites

So far, BoA has been installed and tested on the following LINUX distributions:

• SuSE 10.0

• Scientific Linux 4.2

The following software packages must be installed on a system to be able to install and run BoA . (The given
version numbers indicate the versions that where used during development and tests with the respective
LINUX distribution.)

Table 2.1: Prerequsites
Package Version SuSE Version Scientific Linux

gcc / gccc-c++ 4.0.2 3.4.4
compat-g77 3.3.5 3.4.4
readline-devel 5.0 4.3
libpng-devel 1.2.8 1.2.7
xorg-x11-devel 6.8.2 6.8.2
findutils-locate 4.2.23 4.1.20
cvs 1.12.12 1.11.17

With SuSE, depending on the original setup of the system, some or all of these packages my be missing.
Uso SuSE’s package manager YaST to check if they are present and to install or update them.

With Scientific Linux, all necessary packages are part of a standard installation. If a package is missing or
needs to be updated, use rpm.

2.2 Obtaining the installation script and packages

Make sure that the shell variables CVSROOT and CVS_RSH are set to

CVSROOT: :ext:[yourUserNameOn_aibn28]@aibn28.astro.uni-bonn.de:/var/lib/cvs
CVS_RSH: /usr/bin/ssh

2.3. INSTALLATION USING THE INSTALL.SH SCRIPT 6

The command

cvs co boa-install

will download the external packages and the installation script install.sh (written by Alexandre Beelen,
Thomas Jürges, Frederic Schuller, and Reinhold Schaaf) to the directory boa-install in your current dirctory.

Make the install.sh script executable:

chmod u+x boa-install/install.sh

You are now ready to start the installation. (The BoA software itself is not downloaded at this stage. It will
be downloaded from the CVS server during the installation.)

2.3 Installation using the install.sh script

2.3.1 Running the install.sh script

Before running the install.sh installation script make sure that you have fulfilled the prerequisites described
in Sect. 2.1!

1. Go to the directory where you have downloaded the openboa cvs directory and files. Change into the
directory openboa/install/ where the installation script install.sh is stored.

2. Run the install.sh script by typing:

./install.sh

This begins the process of installing BoA .

The script will prompt you for some paths (reasonable defaults are offered). If you don’t want to
use the default path, then please enter your chosen path, e.g. /home/smueller/BoA, when prompted.
Don’t forget to first create your chosen directory if not already present!

You will also be prompted to enter yes (y) or no (n) for the installation of each software package. For
a fresh installation, you should install every package included (even if, say Python, is allready present
on your system). Skipping installation of packages is useful if you resume an aborted installation
(see below). If you wish to, you can try to see whether BoA works with your preinstalled versions
of software; however, that is at your own risk!

The script will create in this installation directory six sub-directories, bin, BoA, include, lib, man and
tmp where all necessary files will be installed. The required disk space is about 220 MB.

3. After the installation is complete, type

source ~/.boarc.sh (if you are working in bash)

or

source ~/.boarc.csh (if you are working in csh).

4. You can now run BoA by typing boa at the prompt!

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2.3. INSTALLATION USING THE INSTALL.SH SCRIPT 7

2.3.2 Details of the installation process

The installation consists of three stages, all of which are performed by the installation script:

• Installation of the external packages necessary for BoA

• Installation of BoA itself, including documentation and example FITS files

• Installation of BoA’s initialization files .boarc.sh and .boarc.csh

After the installtion, you will find a installation log in boa-install/build.stat. If the installation fails, the
install script will tell you that something went wrong and give you a place where you can find information
related with the failure. In addition, you can consult boa-install/build.stat for information about the earlier
steps of the installation.

Installation of external packages

The installation script will install the following external packages:

Table 2.2: External packages
Package Version

Python 2.3.2
Numeric 23.1
numarray 0.9
swig 1.3.23
Intel FORTRAN 8.1
scipy_distutils 3.3_33.571
f2py 2.44.240_1892
pgplot 5.2
pPGPLOT 1.3
slalib
pySLALIB 0.4
blas / lapack
cfitsio 2.49
pCFITSIO
BoA-FFTW-Numpy 1.0
mpfit
wcslib 4.1
dchelper
apexFitsWriter
apexCalibrator

The installation script prompts you for the location of the external packages. The default should allways
be correct.

Next, you are prompted for the directory where BoA is to be installed. If this directory allready exists, you
must confirm that choice. (This case is necessary to resume an aborted installation or to update the BoA
software itself. In all other cases, install to a new directory!)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2.4. RESUMING AN INCOMPLETE INSTALLATION 8

The script then installs all external packages into this directory.

For some packages, (e.g. scipy_obsutils) you are prompted whether you want the package to be updated
via CVS. This may not be necessary, so you can safely answer n. If you do update, the installtion script
provides you the necessary information (CVS login and password). Be aware that the CVS server may be
slow or even down. If this is the case, you are prompted after a timeout of about 2 min whether you want
to proceed without the CVS update. If you are nervous, cancel the installation with Ctrl-C and resume
the installation (see below).

Installation of BoA

When the installation of the external packages is complete, the BoA software itself is installed. Since it is
not included in the boa-install download, it is downloaded from the CVS server now. (Please be aware that
you have to use your own CVS login and password here!) As an alternative, you may use a BoA tar-ball.

The script prompts you for a directory, where BoA is to be installed. You can choose any accessible
directory.

After the installation of the BoA software, the documentation and example FITS files are downloaded from
the CVS server and installed. Again you are prompted whether and where you want these features to be
installed.

Installation of BoA’s initialization files

As last step, the script installs the initialization files .boarc.sh and .boarc.csh to your home directory. These
scripts define a runtime environment for BoA (setting shell variables, paths, and aliases) for bash (.boarc.sh)
and csh (.boarc.csh). Before running BoA, type

source ~/.boarc.sh (if you are working in bash)

or

source ~/.boarc.csh (if you are working in csh)

You may want to add this to your shell’s startup script.

2.4 Resuming an incomplete installation

To resume an incomplete installation, run

boa-install/install.sh

again. When prompted for the directory to which BoA is to be installed, specify the same directory as in
the aborted installation. (Do this even if you will not install a single external package; the information is
needed for the initialization files!)

You can then safely skip all installation steps, that where performed successfully in the last installation run.

Please be aware that you are prompted for the variable PGPLOT_DIR after skipping the installation of
pgplot. A reasonable default is offered. However, if you want to use a pre-installed pgplot, you can specify
this here.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2.5. INSTALLATION FAQ 9

2.5 Installation FAQ

2.5.1 BoA fails to start

• ImportError: No module named fUtilities

the fortran modules have not been compiled. Go to the fortran directory and type make

• ImportError: libifport.so.x

you dont have the fortran librarie in you $LD_LIBRARY_PATH, please source the boarc.xx file or
check your installation.

2.5.2 I can’t open a Graphical Device

• check the pgplot and p_pgplot installation

• if trying to output png files, make sure that libpng was present when compiling pgplot.

2.5.3 Reading a MBFits file fails

• check the cfitisio and pcfitsio installation

• check that the version of MBFits.xml/$MBFITSXML you are using match the file you are trying
to read

2.6 Updating BoA

Depending on the changes in BoA that make an update necessary (or desirable), an update of BoA alone
or an update of the external packages and of BoA may be necessary. Unfortunately, presently there is no
systematic way to find out whether a update of the external packages is necessary. The best choice may be
first to try an update of BoA alone, and if this causes problems, make an update of the external packages
and BoA .

Updating BoA alone

Examine the shell variable BOA_HOME_BOA that is set in the initialization files ~/.boarc.sh and
~/.boarc.csh, to find out, where BoA is installed. Move to this dirctory:

cd $BOA_HOME_BOA

Make sure that the shell variables CVSROOT and CVS_RSH are set to

CVSROOT: :ext:[yourUserNameOn_aibn28]@aibn28.astro.uni-bonn.de:/var/lib/cvs
CVS_RSH: /usr/bin/ssh

Now update BoA from the CVS server by typing

cvs update

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

2.6. UPDATING BOA 10

Updating external packages and BoA

Follow the instructions in section 2.2 to obtain a new installation script and the external packages from the
CVS server. Then follow section 2.4 to replace the external packages of your current installation that need
to be updated. Do not forget to update BoA itself in this process!

If this does not result in a working installation, do a fresh installation according to section 2.3, possibly
into a new directory.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

3. OVERVIEW OF BoA STRUCTURE

In this Chapter, we give a basic overview of the structure of BoA . Section 3.1 gives a brief introduction
to the raw data file format, and Section 3.2 shows an overview of the data structure within BoA . More
in-depth descriptions are given in Chapter 7.

3.1 Input data

The data acquired at the APEX telescope are stored in a new file format, known as the MB-Fits format (for
Multi-Beam FITS format, see the reference document APEX-MPI-IFD-0002 by Hatchell et al. for details).
These files contain:

• the raw data as provided by the Frontend-Backend in use at the telescope

• data associated parameters: time of the observations, positions on the sky...

• a description of the complete Scan (eg. for a map: number of lines, steps between lines...)

• parameters of the receiver channels in the array: relative positions, relative gains

A more complete description of the input data format is given in Sect. 7.1.

3.2 Internal data handling

Taking full advantage of the object-oriented nature of Python, BoA handles data by means of objects
of various classes. The primary class for data storage and manipulation is called DataEntity (see also
Section ??). This class allows to store the raw data and associated parameters, and it provides methods
relevant for any kind of observations (e.g. reading data from an MB-FITS file, plotting the signal as time
series, plotting the telescope pattern). The most important attributes of this class are:

• BolometerArray: here, the relative positions and gains of the receiver channels are stored, as well as
generic informations about the instrument and telescope (name, diameter, coordinates...)

• ScanParam: this contains the data associated parameters: coordinates of each point in several sys-
tems, timestamps (in LST and MJD), subscans related informations

• Data: this is a 2D array (time × bolometer) which contains the current version of the data. At time
of reading, the raw data are stored there; the content of this array is then altered by any processing
step

• DataFlags, DataWeights: 2D arrays, with same size as Data, where flagging values and relative
weights are stored for each individual data point

3.2. INTERNAL DATA HANDLING 12

For processing different types of observations, BoA then provides several classes which inherits from
DataEntity. Inheritance allows to define a class which contains all attributes and methods of the parent
class, plus some specific attributes/methods. The inheritance scheme in BoA is as follows:

DataEntity < DataAna < Map < Point < Focus

When BoA is started, one object of class Focus is created with name data; this is the current data object, on
which all reduction procedures can be applied. Additional objects of any data class can be created by the
user within one BoA session. Then, applying processing methods to a data object with a different name that
data requires to enter the full syntax (see Chapter ...), including the full name of the method, as opposed to
the shortcuts described in Chapters 4 and 5.

Note: Python ensures no real difference between private and public attributes. There are only hidden
attributes but this hiding can be overcome easily. Therefore the user might set any attribute directly and call
any method. This is not advisable and may easily corrupt the whole BoA session. It is more recommendable
to just use those methods for which the start script BoaStart.py provides abbreviations.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

4. BASIC OUTLINE OF BoA USAGE

This section describes how to start up BoA for the first time and lists a small set of BoA commands needed
when starting BoA for the first time. Detailed information on these and many more BoA commands can be
found in Chapter 5.

4.1 Starting up BoA

You can invoke BoA in the following ways:

• call python in interactive mode (-i) with the file BoaStart.py

python -i BoaStart.py

• as above but using an alias you have set up in your .cshrc (see section ??)

• from an already running python session it is possible to import the BoA functionalities and com-
mands by typing

>>> execfile(’BoaStart.py’)

at the python prompt.

BoA then prints a welcome message providing version information and changes the prompt to the boa>
prompt. Nevertheless, you are still in the interactive python layer. The start script BoaStart.py imports a
set of modules, instantiates the most essential objects and makes the respective methods available.

4.2 Some useful BoA commands

In this section we list some useful BoA commands, classified in terms of their function. Just enter them at
the boa> prompt (note that the parentheses are mandatory).

Note, these commands are abbreviations for the full user method names, as is described in Chapter 4.

4.2.1 Setting up

• indir() Change the input directory

• proj() Define the APEX project ID and simplify the I/O

• ils() List the content of the input directory

• find() Reset the above input directory list

4.2. SOME USEFUL BOA COMMANDS 14

4.2.2 Display

• open() Open a device

• close() Close the current device

• device() Select a particular device

4.2.3 Reading in & plotting data

• read() Load a given fits file to BoA

• signal() Plot the signal against time

• azeloff() Plot the telescope pattern on the sky in azimuth/elevation offsets coordinates

• chan() Select a subset of channel

• select() Select scans depending on the given criteria

4.2.4 Flagging data

• flagLST() Flag data against time

• flagCh() Flag a given channel

4.2.5 Basic data analysis

• base() Remove a baseline

• stat() Compute basic statistic on the data

• plotcor() Correlation plot

4.2.6 Mapping

• chanMap() Produce a channel map

• fastMap() Project the data in the sky plane

4.2.7 Getting Help

You can get help on a BoA command() at any time by typing

print command.__doc__

at the prompt.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5. BoA USER GUIDE

In this chapter you will find detailed descriptions of user methods, their arguments, output and abbreviations
and some examples of the different tasks possible to execute in BoA . As many user methods have an
abbreviated form, these are listed in Section 5.10.

5.1 Overview of how to use BoA

5.1.1 Methods

BoA tasks are accessed by directly calling the appropriate methods from the interactive python layer. This
ensures the full availability of all python and ppgplot facilities. As the method names to be called from
the python layer may be rather long, the start script BoaStart.py provides a set of convenient abbreviations
for those methods which are meant to be called directly by the user (“public” methods). We will therefore
refer to these as user methods.

Example:

The name of the method to open a new graphic device is DeviceHandler.openDev and it can
be called by

DeviceHandler.openDev()

or more conveniently by the abbreviations (user methods)

open() or op()

(note that the parentheses are always mandatory).

5.1.2 Arguments

Nearly all user methods require arguments to be passed. Nevertheless, the methods provide default argu-
ments which thus may be omitted. In this case many methods just supply status information.

Example:

The user method indir() sets the desired input directory and requires the directory name as
its argument:

indir(’/home/user/data/’)

5.1. OVERVIEW OF HOW TO USE BOA 16

The directory name is a string argument and has to be passed embedded in double or single quotes. Note
that for consistency, in the examples throughout this manual we always use single quotes, but these can of
course be substituted for double quotes.

Omitting the argument does not change the input directory but instead results in the supply of the current
directory name:

indir()

In case an argument has to be typed more often a python variable can be used:

a=’/home/user/data/’
indir(a)

Some methods require a list as argument. In python a list is embedded in square brackets with a comma as
separator. Python provides a variety of functionalities to manipulate lists.

Example:

The user method signal() plots the time series of the data (flux density or counts versus
time). It allows the user to define the list of channels plotted:

signal([18,19,20])

To create a list you can use the python function range():

mylist=range(1,163)
signal(mylist)

or:

signal(range(1,163))

Even if the list contains only one element the square brackets are mandatory:

signal([5])

User methods can also be called using keyword arguments of the form keyword = value.

Example:

By default, the user method signal() plots the signal versus time connecting the datapoints
with lines:

signal()

However, if you prefer, for example, to see the individual datapoints without lines, you can
modify the value of the style argument:

signal(style=’p’)

A description of plotting related arguments such as style is given in Section ??.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.2. USER METHODS FOR DATA REDUCTION AND MAP MAKING 17

5.1.3 Output

Most user methods supply status information as screen output when being called. The amount of informa-
tion displayed can be restricted using the message handler associated with the main data object:

data.MessHand.setMaxWeight(4)

where the arguement is an integer value between 1 and 5, with the following meaning:

• 1: errors, queries

• 2: warnings

• 3: short info

• 4: extended info

• 5: debug

5.2 User methods for data reduction and map making

5.2.1 Pointing

Processing a Pointing scan requires an object of the class Point. Since the default data object is of class
Map, it has to be redefined before reading the file. Then the method to process the data is called solve-
Pointing. Optionally, the method showPointing can be called to show the results on a map:

data = BoaPointing.Point() # instantiate a Point object
read(’APEX-600’) # fill it with data
solvePointing() # compute pointing offsets
showPointing() # display map and fitted 2D-Gaussian

5.2.2 Focus

The recommended way to conduct Laboca focus observations is to perform a series of n*3 short, symmetric
on-offs, e.g. 3 or 6*(4*5sec). For this simply the onoff has to be reduced and then the results can be fitted
by a parabola.

solveFocus() # compute the optimal focus position

5.2.3 Skydip

5.2.4 OnOff

5.2.5 Mapping

Several methods are provided to construct a map, taking into account the relative positions of the bolome-
ters in the instrument. The slowMap() method computes exact positions and loops over the pixels of the
resulting map to calculate the contributions to the flux at a given position from all bolometers. This is a
very slow method.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.3. USER METHODS FOR FILE READING 18

The fastMap() method loops over the signal series in each bolometer, and dumps fluxes at the nearest
pixel on the final map. Then the maps produced from each bolometer are coadded. This method makes use
of operations on arrays, and is thus very fast.

read(’lissajou’)
open() # open an XWindow device
fastMap() # reconstruct a map with the fast method

5.2.6 Beam maps

5.3 User methods for file reading

5.3.1 Reading a FITS file

Reading a FITS file into BoA is done with the read() command. You may want to define the input
directory first:

indir(’../fits/’) # set the input directory
read(’APEX-600’) # read file APEX-600.fits

The data are then stored in the default data object. It is possible to use several data objects, and to store the
content of a file to a user defined object requires the following syntax:

data2 = BoaMapping.Map() # define a second data object
of class Map

data2.read(’APEX-600’)

5.4 User methods for controlling graphics display devices

In order to display your data in various ways using the BoA plotting methods described in Section 5.5
below, you first need to open a graphics display device (e.g. Xwindows). Graphics display in BoA is
controlled by a software package called BoGLi (the BoA Graphic Library), which is described in Chapter 6.
A few basic BoGLi commands which are needed in order to carry out the BoA plotting methods described
in section 5.5 are thus described in this section.

5.4.1 Opening a plot window

Opening a graphic device is done with the open() command:

open() # open a device, default: XWindow
op() # alternatively, use the abbreviated command

The default is to open an XWindow. You can use

op(’?’)

to get a list of all recognized devices. Alternatively, if you know which device you want you can enter it
directly, for example

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.5. USER METHODS FOR DISPLAYING DATA 19

op(’/ps’)

You can also open a named PostScript file, here a colour PostScript file named signal.ps, with

op(’signal.ps/CPS’)

5.4.2 Clearing a plot window

Clearing a plotting window is done with the clear() command:

clear() # clear the active device

However, any plot command will first clear the active device before plotting a new graph, unless the over-
plot=1 keyword is supplied.

5.4.3 Closing a plot window

Closing a graphic device is done with the close() command:

close() # open a device, default: XWindow

5.5 User methods for displaying data

5.5.1 Displaying channel maps

If you want to display channel maps you can do this with the command chanmap(). The default is to
plot channel maps for all available channels. You can also specify a list of channels to be plotted.

Example:

read(’3543’) # read in a file
op() # open an XWindow device
chanmap() # produce channel maps for all channels
chanmap(range(26)) # channel maps for the first 25 channels
chanmap([1,4,20,55]) # channel maps for a selection of channels

5.5.2 Plotting azimuth versus LST

DESCRIPTION: Plot the time series of the azimuth, i.e. azimuth versus LST.

USAGE: azimuth(optional arguments)

OPTIONAL ARGUMENTS:

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.5. USER METHODS FOR DISPLAYING DATA 20

Figure 5.5.1: Default graphical outputs of a channel map of the source 00388+6312, including a wedge.

flag flag to be used (default = 0: all valid data; -1: plot all)
limitsX range of X values to be plotted (comma separated values, in square brackets)
limitsY range of Y values to be plotted (comma separated values, in square brackets)
style linestyle to be used (’p’ or ’l’, for points and solid line respectively)
ci colour index to be used (integer values)
overplot

aspect

A more detailed description of plotting related arguments can be found in Section ??.

Example:

azimuth(style=’p’, ci=2, limitsY=[-14,-13])

Plot azimuth versus LST but show individual plotted points (rather than lines), make plotted
points red, and only plot azimuth (y axis) from -14 to -13 degrees.

5.5.3 Plotting elevation versus LST

DESCRIPTION: Plot the time series of the elevation i.e. elevation versus LST.

USAGE: elevation(optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)
limitsX range of X values to be plotted (comma separated values, in square brackets)
limitsY range of Y values to be plotted (comma separated values, in square brackets)
style linestyle to be used (’p’ or ’l’, for points and solid line respectively)
ci colour index to be used (integer values)
overplot

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.5. USER METHODS FOR DISPLAYING DATA 21

A more detailed description of plotting related arguments can be found in Section ??.

Example:

as for azimuth(), above.

5.5.4 Plotting elevation versus azimuth

DESCRIPTION: Plot elevation versus azimuth.

USAGE: azel(optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)
limitsX range of X values to be plotted (comma separated values, in square brackets)
limitsY range of Y values to be plotted (comma separated values, in square brackets)
style linestyle to be used (’p’ or ’l’, for points and solid line respectively)
ci colour index to be used (integer values)
overplot

A more detailed description of the plotting related arguments can be found in Section ??.

Example:

as for azimuth(), above.

5.5.5 Selecting channels

DESCRIPTION: Select a channel or a list of channels to be plotted. The list is automatically sorted.

USAGE: channels(optional argument)

OPTIONAL ARGUMENTS:

chanList: list of channel numbers, of the form: [1,2,3]
’all’... ’al’...’a’

’?’

Example:

channels([1,2,3]) list of channels to be plotted
channels(chanList=[1,2,3]) list of channels to be plotted
channels(’all’) set current list to all possible channels
channels(’?’) get current list of channels (the default if no argument is specified)

5.5.6 Plotting flux density versus LST

DESCRIPTION: Plot the time series of the flux density i.e. flux density versus LST.

USAGE: signal(optional argument)

OPTIONAL ARGUMENTS:

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.6. MB-FITS TO FITS FILE CONVERSION 22

chanList list of channels, of the form [1,2,3]
flag flag to be used
mjd if set, use mjd instead of lst
limitsX range of X values to be plotted (comma separated values, in square brackets)
limitsY range of Y values to be plotted (comma separated values, in square brackets)
style linestyle to be used (’p’ or ’l’, for points and solid line respectively)
ci colour index to be used (integer values)
overplot

A more detailed description of the plotting related arguments can be found in Section ??.

Example:

signal(chanList=[18,19,20], mjd=1, style=’p’, ci=2)
signal([18,19,20], mjd=1, style=’p’, ci=2)

5.5.7 Plotting the FFT of the signal

A Fast Fourrier Transform (FFT) of the signal can be plotted using the fft method:

read(’spiral1’)
op() # open an XWindow device
data.fft(range(10)) # plot FFT for the first 9 channels

5.6 MB-Fits to FITS file conversion

To convert an MB-Fits file to a FITS file in the MAMBO format you can use the command mambo(). The
current version does NOT use the data contained in the data object in Boa, but reads the input file (with
default name = BoaB.currData.FileName) and converts it to the Mambo format. Therefore, this procedure
is somewhat decoupled from Boa.

5.7 Scripts

As BoA provides the full functionality of python this allows the use of scripts. Scripts can be run with the
execfile() function where the name of the file has to be given as string argument. The suffix of the file
is arbitry.

Example:

If you want to have a look at the time series of channels 10 to 30 succesively, create the
following script with your preferred editor. Note that in python the contents of the for loop
(like if blocks, method definitions, etc.) have to be indented.

testBoa.py
indir(’../Fits/’) # set the input directory
read(’3543’) # read file 3543.fits
op() # open graphic display

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.7. SCRIPTS 23

for i in range(10,31): # start a for loop, the indentation in
the following lines is mandatory

sig([i]) # plot time series
raw_input() # wait for <Return>

To run the script type:

execfile(’testBoa.py’)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.8. COMMANDS IN ALPHABETICAL ORDER 24

5.8 Commands in alphabetical order

arrayParameters determine the array parameters from the data
basePoly fit and subtract baseline from individual scans or subscans
basePolySubscan subtract baseline subscan by subscan
beamMap build a beam map in (Az,El) coordinates
blankAmplitude blank the amplitude below and/or after a certain frequency
checkChanList Return a list of valid channels
checkFits check for MBFits name structure
clear clear the active plot window
closeDev close one device
computeBeamSize Compute the beam size in arcsec
computeChanSep Compute separation between pixels (in arcsec)
computeChanSepValid Compute separation between VALID (i.e. not flagged -1) pixels

(in arcsec)
computeCorMatrix compute correlation matrix
computeOnOff determine ON-OFF pairs from content of WobblerSta, and fill

OnOffPairs attribute with pairs of integration numbers. The re-
sult is a 2 x Nb_Integ. array of integers.

computeSN compute correlated noise, run after computeCorMatrix, com-
puteWeight, correlate

computeWeight compute weight matrix of the used channels, run after com-
puteCorMatrix

correlate compute correlation relative to a reference channel
despike Flag yet unflagged data below ’below’*rms and above

’above’*rms
doFFT perform the FFT
dumpData save data object to a file
fastChanMap plot channel maps (quick method)
fastmap reconstruct a map in (Az,El) coordinates combining bolometers
findInDir ???
findSubscan compute subscan indices from steps in az, el
flag flag data at more than n*rms
flagChannels flag a list of channels
flagLST flag data by LST interval
flagLon flag data by Az offset interval
flagPosition flag a position in the sky within a given radius
flagRms Flag channels with rms below or above respective given values
flagSubscan flag certain subscans
getChanData get data for one channel
getChanIndex convert from physical channel number to index in UsedChannel
getChanListData get data for a list of channels
getChanSep return the channel separation in both direction from the reference

channel

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.8. COMMANDS IN ALPHABETICAL ORDER 25

getPixel allow user to get pixel values using mouse
invFFT perform the inverse FFT
iterMap reconstruct a map in (Az,El) coordinates combining bolometers

and using varying scale to zoom on signal
listInDir list the input directory
mambo convert MB-Fits file to MAMBO format
medianBaseline baseline: Remove median value per channel and per subscan
medianFilter median filtering: remove median values computed over sliding

window
open open a graphic device
plotArray plot the receiver parameters
plotAzEl plot elevation versus azimuth
plotAzElOffset plot elevation offset versus azimuth offset
plotAzimuth plot azimuth versus LST
plotAzimuthOffset plot azimuth offset versus LST
plotCorMatrix plot the correlation matrix
plotCorrel plot signal vs. reference channel
plotElevation plot elevation versus LST
plotElevationOffset plot elevation offset versus LST
plotFFT plot FFT of signal
plotGain plot the gain of the Array
plotMean plot mean flux values vs. subscan numbers
plotMeanChan plot mean value for each subscan vs. chan. number
plotRms plot rms flux values vs. subscan numbers
plotRmsChan plot rms value for each subscan vs. chan. number
plotSubscan generate a plot showing starting and ending times of subscans
plotSubscanOffsets Use four colours to show subscans on the Az, El pattern
read read in a file
readAsciiRcp update receiver channel offsets from a simple ascii file, channel-

Number AzOffset(arcsec) ElOffset(arcsec)
readRCPfile update Receiver Channel Parameters (attributes Offsets, Gain

and ChannelSep) from the content of a file
reduce Process a Pointing scan - this method is called by the apexCali-

brator
resiz resize the plot, after resizing window with mouse
resetCurrentList reset the CurrentList to the complete list
restoreData restore a previously stored BoA *.sav file
rotateArray rotate array offsets according to elevation
saveMambo convert an MB-Fits file to the MAMBO FITS format, readable

by MOPSIC
selectDev select an open device
selectInDir make a selection in the current list

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.8. COMMANDS IN ALPHABETICAL ORDER 26

setCurrChanList select list of channels
setInDir set the input directory
setInFile set the input file name
setMess display a message
setOutDir set the output directory
setOutFile set the output file name
setProjectID set the project ID
showMap show the reconstructed map in (Az,El)
showPointing ???
signal plot the time series of the data (flux density versus LST)
slowMap reconstruct a map in (Az,El) coordinates combining bolometers
smoothBy smooth the image with a 2D gaussian of gived FWHM
smoothWith smooth the image with the given kernel
snf compute and subtract skynoise
solveFocus compute the optimal focus position
solvePointing compute the pointing offset
solvePointingOnMap compute the offset on the data.Map object
statistics prints the statistics
unflag unflag data
unflagChannels unflag a list of channels
updateArrayParameters Update the Parameters Offsets with the computed values
writeMBfits write the data (and parameters) contained in the current data out

to a FITS file in MB-Fits format
writeRCPfile store current Receiver Channel Parameters (Offsets, Gain) to a

file with mopsi like format

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.9. COMMANDS IN FUNCTIONAL ORDER 27

5.9 Commands in functional order

5.9.1 Plotting

plotArray plot the receiver parameters
plotAzEl plot elevation versus azimuth
plotAzElOffset plot elevation offset versus azimuth offset
plotAzimuth plot azimuth versus LST
plotAzimuthOffset plot azimuth offset versus LST
plotCorMatrix plot the correlation matrix
plotCorrel plot signal vs. reference channel
plotElevation plot elevation versus LST
plotElevationOffset plot elevation offset versus LST
plotFFT plot FFT of signal
plotGain plot the gain of the Array
plotMean plot mean flux values vs. subscan numbers
plotMeanChan plot mean value for each subscan vs. chan. number
plotRms plot rms flux values vs. subscan numbers
plotRmsChan plot rms value for each subscan vs. chan. number
plotSubscan generate a plot showing starting and ending times of subscans
plotSubscanOffsets Use four colours to show subscans on the Az, El pattern
signal plot the time series of the data (flux density versus LST)
slowMap reconstruct a map in (Az,El) coordinates combining bolometers

5.9.2 Device handling

clear clear the active plot window
closeDev close one device
open open a graphic device
resiz resize the plot, after resizing window with mouse
selectDev select an open device

5.9.3 Pointing and focus

reduce Process a Pointing scan - this method is called by the apexCali-
brator

showMap show the reconstructed map in (Az,El)
showPointing ???
solveFocus compute the optimal focus position
solvePointing compute the pointing offset
solvePointingOnMap compute the offset on the data.Map object

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.9. COMMANDS IN FUNCTIONAL ORDER 28

5.9.4 Flagging and despiking data

blankAmplitude blank the amplitude below and/or after a certain frequency
despike Flag yet unflagged data below ’below’*rms and above

’above’*rms
flag flag data at more than n*rms
flagChannels flag a list of channels
flagLST flag data by LST interval
flagLon flag data by Az offset interval
flagPosition flag a position in the sky within a given radius
flagRms Flag channels with rms below or above respective given values
flagSubscan flag certain subscans
unflag unflag data
unflagChannels unflag a list of channels

5.9.5 Map making

beamMap build a beam map in (Az,El) coordinates
fastChanMap plot channel maps (quick method)
fastmap reconstruct a map in (Az,El) coordinates combining bolometers
iterMap reconstruct a map in (Az,El) coordinates combining bolometers

and using varying scale to zoom on signal

5.9.6 Baseline subtraction, sky removal and statistics

basePoly fit and subtract baseline from individual scans or subscans
basePolySubscan subtract baseline subscan by subscan
computeCorMatrix compute correlation matrix
computeSN compute correlated noise, run after computeCorMatrix, com-

puteWeight, correlate
computeWeight compute weight matrix of the used channels, run after com-

puteCorMatrix
correlate compute correlation relative to a reference channel
doFFT perform the FFT
invFFT perform the inverse FFT
medianBaseline baseline: Remove median value per channel and per subscan
medianFilter median filtering: remove median values computed over sliding

window
smoothBy smooth the image with a 2D gaussian of gived FWHM
smoothWith smooth the image with the given kernel
snf compute and subtract skynoise
statistics prints the statistics

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.9. COMMANDS IN FUNCTIONAL ORDER 29

5.9.7 File handling

checkFits check for MBFits name structure
dumpData save data object to a file
mambo convert MB-Fits file to MAMBO format
read read in a file
restoreData restore a previously stored BoA *.sav file
saveMambo convert an MB-Fits file to the MAMBO FITS format, readable

by MOPSIC
writeMBfits write the data (and parameters) contained in the current data out

to a FITS file in MB-Fits format

5.9.8 Data handling

arrayParameters determine the array parameters from the data
checkChanList Return a list of valid channels
computeOnOff determine ON-OFF pairs from content of WobblerSta, and fill

OnOffPairs attribute with pairs of integration numbers. The re-
sult is a 2 x Nb_Integ. array of integers.

findSubscan compute subscan indices from steps in az, el
getChanData get data for one channel
getChanIndex convert from physical channel number to index in UsedChannel
getChanListData get data for a list of channels
getChanSep return the channel separation in both direction from the reference

channel
getPixel allow user to get pixel values using mouse

5.9.9 Selecting files and directories

findInDir ???
listInDir list the input directory
resetCurrentList reset the CurrentList to the complete list
selectInDir make a selection in the current list
setCurrChanList select list of channels
setInDir set the input directory
setInFile set the input file name
setOutDir set the output directory
setOutFile set the output file name
setProjectID set the project ID

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.10. ABBREVIATIONS 30

5.9.10 Misc.

computeBeamSize Compute the beam size in arcsec
computeChanSep Compute separation between pixels (in arcsec)
computeChanSepValid Compute separation between VALID (i.e. not flagged -1) pixels

(in arcsec)
readAsciiRcp update receiver channel offsets from a simple ascii file, channel-

Number AzOffset(arcsec) ElOffset(arcsec)
readRCPfile update Receiver Channel Parameters (attributes Offsets, Gain

and ChannelSep) from the content of a file
rotateArray rotate array offsets according to elevation
setMess display a message
updateArrayParameters Update the Parameters Offsets with the computed values
writeRCPfile store current Receiver Channel Parameters (Offsets, Gain) to a

file with mopsi like format

5.10 Abbreviations

As we have noted already, user methods are abbreviations of the full methods. For example, the method
DeviceHandler.openDev() can be called by the user method open(). For further convenience,
most user methods can also be called by even shorter abbreviations of the user methods (in this example
op() is all that is needed). A list of user methods and their abbreviations is given in Table 5.1.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

5.10. ABBREVIATIONS 31

Command Abbreviations
basePoly baseline ... base
basePolySubscan basesub
clear clea ... cle ... cl
closeDev close ... clos ... clo
computeCorMatrix cormatrix ... cmatrix
correlate cor
dumpData dumpDat ... dumpD ... dump
fastChanMap2 chanmap ... ChanMap ... chanMap
fastmap2 mapping ... fastMapping ...fastMap
findInDir find ... fd
flagChannels flagCh ... flagC ... fCh
listInDir indirls ... ils
setMess mess
open ope ... op
plotAzEl azel
plotAzElOffset azeloff ... azelo
plotAzimuth azimuth ... azim ... az
plotAzimuthOffset azimuthOffset ... azimoff ... azo
plotCorrel plotcorrel ... plotcor ... plotCor
plotElevation elevation ... elev ... el
plotElevationOffset elevationOffset ... eleoff ... elo
plotMean plotmean ... plotMean
plotMeanChan plotmeanchan ... plotMeanChan
plotRms plotrms ... plotRms
plotRmsChan plotrmschan ... plotRmsChan
readRCPfile readRCP ... rcp
resiz resi
restoreData restoreD ... restore ... restor
saveMambo mambo
selectDev device ... devic ... devi ... dev
selectInDir select ... slt
setCurrChanList channels ... channel ... chan
setInDir indir ... indi ... ind
setInFile infile ... infil ... infi ... inf
setOutDir outdir ... outdi ... outd
setOutFile outfile ... outfil ... outfi ... outf
setProjectID setproj ...proj
signal signa ... sign ... sig
statistics stat
unflagChannels unflagCh ... unflagC ...ufCh

Table 5.1: List of user methods with abbreviations. Don’t forget to add the round brackets () at the end of
the commands.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6. BoGLi : THE BoA GRAPHIC

LIBRARY

6.1 Introduction

The BoA Graphic Library (BoGLi) is an object-oriented software package for the graphical display of
data. It is written in Python and uses pgplot, the python binding to pgplot. The main parts (classes) of the
software are self-consistent and may independently be used from any python programme. Nevertheless,
BoGLi comes with features which especially customise its use for the display of astronomical data from
multi-channel receivers. Its main goal is to provide a graphic tool tailored for the use with BoA for the
display of data from LaBoCa, Simba and Mambo.

6.2 Command handling

BoGLi has its own command handler. Nevertheless, anytime the BoA command handler encounters a
graphic command this is automatically passed to the BoGLi command handler. Therefore, the user does
not have to care about the separation between BoA and BoGLi commands. Table 6.1 gives an overview of
some of the available commands.

BoGLi provides a variety of attributes that may be changed by the user. The attribute name is then used as
command followed by the desired value as argument (see Sect. ?? for details.)

Table 6.1: List of useful BoGLi commands.

DeviceHandler.openDev open a device
DeviceHandler.closeDev close a device
Plot.clear clear the active plot window
DeviceHandler.selectDev select a device
DeviceHandler.resizeDev resize the plotting area, after plot window resized using mouse
Plot.plot make a single plot
MultiPlot.plot plot multiple plots
Plot.draw draw on an image
MultiPlot.draw draw on plots of multiple channels

http://www.astro.caltech.edu/~tjp/pgplot/

6.3. DEVICE HANDLING 33

6.3 Device handling

BoGLi is based on pgplot and as a consequence the number and type of available de-
vices depends on the actual configuration. A list of supported devices is given at
http://www.astro.caltech.edu/ tjp/pgplot/devices.html. During installation the device drivers have to
be selected by editing the file drivers.list. As many device drivers are available on selected operating
systems only, you should ensure that drivers you do not want are commented out (place ! in column 1) to
avoid installation failures. A version of drivers.list used for a Linux PC can be found in Sect ??.

The command handler of BoGLi provides a set of commands to manage output devices. A detailed de-
scription of these commands is given below.

6.3.1 Opening a plot window

DESCRIPTION: Open a graphics device for pgplot output and make it the current device. The default, when
no argument is provided, is to open an XWindow.

USAGE: DeviceHandler.openDev(optional argument)

The relevant abbreviations can also be used (see Table 5.1).

OPTIONAL ARGUMENT: pgplot device type

If the device is opened successfully, it becomes the selected device to which graphics output is directed until
another device is selected (see 6.3.4) or the device is closed (see 6.3.2). If no device argument is specified
PGPLOT will open the default graphics device (an XWINDOW). Alternatively, the graphics device may
be selected using any of the following as arguments:

(1) A complete device specification of the form ’device/type’ or ’file/type’, where /type is one of the
allowed PGPLOT device types (installation-dependent, e.g. /xwindow) and ’device’ or ’file’ is the
name of a graphics device or disk file appropriate for this type. The ’device’ or ’file’ may contain ’/’
characters; the final ’/’ delimits the ’type’. If necessary to avoid ambiguity, the ’device’ part of the
string may be enclosed in double quotation marks.

Example: ’plot.ps/ps’, ’dir/plot.ps/ps’, ’"dir/plot.ps"/ps’,
’user:[tjp.plots]plot.ps/PS’

(2) A device specification of the form ’/type’, where /type is one of the allowed PGPLOT device types,
e.g. /xwindow. PGPLOT supplies a default file or device name appropriate for this device type.

Example: ’/ps’ (PGPLOT interprets this as ’pgplot.ps/ps’)

(3) A device specification with ’/type’ omitted; in this case the type is taken from the environment vari-
able PGPLOT_TYPE, if defined (e.g., setenv PGPLOT_TYPE PS). Because of possible confusion
with ’/’ in file-names, omitting the device type in this way is not recommended.

Example: ’plot.ps’ (if PGPLOT_TYPE is defined as ’ps’, PGPLOT interprets this as
’plot.ps/ps’)

(4) A blank string (’ ’); in this case, PGOPEN will use the value of environment variable PGPLOT_DEV
as the device specification, or ’/NULL’ if the environment variable is undefined.

Example: ’ ’ (if PGPLOT_DEV is defined)

(5) A single question mark, with optional trailing spaces, i.e. (’?’). In this case, PGPLOT will prompt the
user to supply the device specification, with a prompt string of the form ’Graphics device/type (? to
see list, default XXX):’ where ’XXX’ is the default (value of environment variable PGPLOT_DEV).

Example: ’? ’

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

http://www.astro.caltech.edu/~tjp/pgplot/
http://www.astro.caltech.edu/~tjp/pgplot/devices.html

6.3. DEVICE HANDLING 34

(6) A non-blank string in which the first character is a question mark (e.g. ’?Device: ’); in this case,
PGPLOT will prompt the user to supply the device specification, using the supplied string as the
prompt (without the leading question mark but including any trailing spaces).

Example: ’?Device specification for PGPLOT: ’

In cases (5) and (6), the device specification is read from the standard input. The user should respond to the
prompt with a device specification of the form (1), (2), or (3). If the user types a question-mark in response
to the prompt, a list of available device types is displayed and the prompt is re-issued. If the user supplies
an invalid device specification, the prompt is re-issued. If the user responds with an end-of-file character,
e.g., ctrl-D in UNIX, program execution is aborted; this avoids the possibility of an infinite prompting loop.
A programmer should avoid use of PGPLOT-prompting if this behavior is not desirable.

The device type is case-insensitive (e.g., ’/ps’ and ’/PS’ are equivalent). The device or file name may be
case-sensitive in some operating systems.

6.3.2 Closing a plot window

DESCRIPTION: Close a plotting device. The default, where no argument is supplied, is to close the current
device.

USAGE: DeviceHandler.closeDev(optional argument)

OPTIONAL ARGUMENT:

device number (integer)
’all’
’current’...’curre’...’cur’

Example:

DeviceHandler.closeDev(2) Close the device with identifier 2
DeviceHandler.closeDev(’all’) close all devices
DeviceHandler.closeDev(’current’) close current device (the default if no argument specified)

6.3.3 Clearing a plot window

DESCRIPTION: Clear the output of the current device. To clear the output of a different device change to
that device first (see 6.3.4).

USAGE: Plot.clear()

6.3.4 Selecting a device

DESCRIPTION: Select an open device for graphical output. The selected device has to be previously opened
with open (see 6.3.1).

USAGE: DeviceHandler.selectDev(argument)

ARGUMENT: device number (integer)

Example:

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 35

Figure 6.4.1: Example 1 of graphics produced using Plot.plot

DeviceHandler.selectDev(2) Make device number 2 the current device for graphical output

6.3.5 Resizing a device

DESCRIPTION: Resize the plotting area after resizing of the graphics display window using the mouse.
This is applicable to some interactive devices (e.g. /xwindow).

USAGE: DeviceHandler.resizeDev()

6.4 Plotting graphics

This section lists some of the graphics plotting capabilities of BoGLi .

6.4.1 Plotting single plots

DESCRIPTION: Make a single plot of x versus (optional) y.

USAGE: Plot.plot(dataX, [dataY, limitsX, limitsY, labelX, labelY, caption, style, ci, width, overplot,
aspect, logX, logY, nodata])

ARGUMENTS:

dataX values to plot along X
dataY values to plot along Y (optional - default: plot dataX vs. running number)

OPTIONAL ARGUMENTS:

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 36

Figure 6.4.2: Example 2 of graphics produced using Plot.plot

Figure 6.4.3: Example 3 of graphics produced using Plot.plot

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 37

limitsX limits to use in X for the plot
limitsY limits to use in Y for the plot
labelX x label (default ’x’)
labelY y label (default ’y’)
caption the caption of the plot (default ’ ’)
style the style used for the plot (’l’: line, ’p’: point (default), ’b’: histogram)
ci color index (default 1)
width linewidth (defaut 0 = use previous)
aspect keep the aspect ratio in ’physical’ unit
overplot set overplot=1 to overplot (default no)
logX set logX=1 to use a log scale (default no)
logY set logY=1 to use a log scale (default no)

These are also described in Section ??. Note dataY is also optional – if no dataY is supplied the default is
to plot dataX versus running number.

Example:

x = Numeric.array(range(100),Numeric.Float)/10

Plot.plot(x,Numeric.sqrt(x),limitsX=[1,5])

Note that Y limits are then computed according to this X range.

The graphic output produced in this case is shown in Figure 6.4.1.

Example:

Plot.plot(x,x*x,labelX=’blah’,labelY=’blah2’,caption=’caption’)

Note that plot clear the screen first, you need to use the new ’overplot’ keyword (see below).

The graphic output produced in this case is shown in Figure 6.4.2.

Example:

Plot.plot(x,x*x*x,overplot=1,ci=2,style=’l’)

The graphic output produced in this case is shown in Figure 6.4.3.

6.4.2 Plotting multiple channels

DESCRIPTION: Make a plot of x versus (optional) y for several channelssimultaneously.

USAGE: MultiPlot.plot(chanList, dataX, dataY, [limitsX, limitsY,labelX,labelY, caption,
style, ci, overplot, logX, logY, nan])

ARGUMENTS:

chanList list of channels, of the form [1,2,3]
dataX values to plot along X
dataY values to plot along Y

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 38

Figure 6.4.4: Example of graphics produced using MultiPlot.plot

OPTIONAL ARGUMENTS:

limitsX limits to use in X for the plot
limitsY limits to use in Y for the plot
labelX x label (default ’x’)
labelY y label (default ’y’)
caption the caption of the plot (default ’ ’)
style the style used for the plot (’l’: line, ’p’: point (default), ’b’: histogram)
ci color index (default 1)
overplot set overplot=1 to overplot (default no)
logX set logX=1 to use a log scale (default no)
logY set logY=1 to use a log scale (default no)

These are also described in Section ??.

Example:

n_point = 365
chanlist=range(n_point)

x2 = RandomArray.random([n_point,n_point])
y2 = RandomArray.random([n_point,n_point])

MultiPlot.plot(chanlist,x2,y2+x2,style=’p’)

The graphic output produced in this case is shown in Figure 6.4.4.

6.4.3 Drawing on an image

DESCRIPTION: Draw on an image

USAGE: Plot.draw(map_array, [sizeX, sizeY, WCS, limitsX, limitsY, limitsZ, nan, labelX, labelY,
caption, style, contrast, brightness, wedge, overplot, aspect, doContour, levels, labelContour])

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 39

Figure 6.4.5: Example 1 of graphics produced using Plot.draw

Figure 6.4.6: Example 2 of graphics produced using Plot.draw: drawing contours

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 40

ARGUMENTS:

map_array map to display

OPTIONAL ARGUMENTS:

sizeX the ’physical’ size of the array (default pixel numbers), defined by the center
of the two extreme pixels

sizeY the ’physical’ size of the array (default pixel numbers), defined by the center
of the two extreme pixels

limitsX limits to use in X for the plot
limitsY limits to use in Y for the plot
nan set =1 if NaN are present in the array
labelX x label (default ’x’)
labelY y label (default ’y’)
caption the caption of the plot (default ’ ’)
style the color used for the plot (default ’g2r’, see Plot.Plot.setImaCol())
wedge set wedge=1 to draw a wedge (default no)
aspect keep the aspect ratio in ’physical’ unit
overplot set overplot=1 to overplot (default no)
doContour set =1 to draw contour instead of map (default no)
levels the levels for the contours (default nContour, within plotLimitsZ)
labelContour set =1 to label the contours (default no)

These arguments are also described in Section ??.

Example:

n_point = 365

mapping = Numeric.absolute(RandomArray.standard_normal([n_point,n_point/2]))

Plot.draw(mapping,style=’b2r’,wedge=1)

You can also define ’physical’ unit for your plot and still use
limitsX/Y and aspect:

Plot.draw(mapping,sizeX=[-1,1],sizeY=[-2,2],limitsY=[-1,1],aspect=1, wedge=1)

The graphic output produced in this case is shown in Figure 6.4.5.

Example:

You can also use Plot.draw() to plot contours.

def dist(x,y):
return (x-125)**2+(y-125)**2

image = Numeric.sqrt(Numeric.fromfunction(dist,(200,200)))-50

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 41

Figure 6.4.7: Example of graphics produced using MultiPlot.draw

Plot.draw(image,wedge=1,aspect=1,style=’rainbow’) # display an image
Plot.draw(image,doContour=1,overplot=1) # overlay some contours
Plot.contour[’color’] = 2 # change the colour and
Plot.contour[’linewidth’] = 10 # linewidth attributes

Plot.draw(image,doContour=1,overplot=1,levels=[-10,10,20,30]) # plot some
more contours with the new attributes

The graphic output produced in this case is shown in Figure 6.4.6.

6.4.4 Drawing on plots of multiple channels

DESCRIPTION: Draw on a multi-channel image

USAGE: MultiPlot.plot.draw(chanList,map_arrays, [sizeX, sizeY, WCS, limitsX, limitsY,
limitsZ, nan, labelX, labelY, caption, style, contrast, brightness, wedge, overplot])

ARGUMENTS:

chanList list of channels
map_arrays lits of map to display

OPTIONAL ARGUMENTS:

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.4. PLOTTING GRAPHICS 42

sizeX the ’physical’ size of the array (default pixel numbers)
sizeY the ’physical’ size of the array (default pixel numbers)
limitsX limits to use in X for the plot
limitsY limits to use in Y for the plot
labelX x label (default ’x’)
labelY y label (default ’y’)
caption the caption of the plot (default ’ ’)
style the color used for the plot (default ’g2r’, see Plot.Plot.setImaCol())
wedge set wedge=1 to draw a wedge (default no)
overplot set overplot=1 to overplot (default no)

These are also described in Section ??.

Example:

mapping_array = []
n_map = 365
for i in range(n_map):

mapping_array.append(Numeric.absolute(RandomArray.standard_normal([120,120])))

MultiPlot.draw(range(n_map),mapping_array,wedge=1)

The graphic output produced in this case is shown in Figure 6.4.7.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.5. KEYWORDS 43

6.5 Keywords

BoGLi provides a variety of parameters which allow the graphical output to be customised, as regards
primitives such as colours, linestyles, character sizes, as well as text output and general appearance.

ci colour index

The colour index is an integer in the range 0 to a device-dependent maximum. The
default colour index is 1, usually white on a black background for monitor displays
or black on a white background for printed hardcopies. Colour index 0 corresponds
to the background colour. If the requested color index is not available on the selected
device, colour index 1 will be used.

ls line style

The line style is an integer in the range 1 to 5 with the following codes:

1: full line

2: dashed

3: dot-dash-dot-dash

4: dotted

5: dash-dot-dot-dot

The line style does not affect graph markers, text, or area fill.

lw line width

The line width is specified in units of 1/200 (0.005) inch (about 0.13 mm) and must
be an integer in the range 1-201. This parameter affects lines, graph markers and text.

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

labelX x label

(default ’x’)

labelY y label (default ’y’)

caption caption label

(default ’ ’)

style linestyle

(’l’: line, ’p’: point (default), ’b’: histogram)

width linewidth

(defaut 0 = use previous)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

6.5. KEYWORDS 44

aspect aspect ratio

keep the aspect ratio in ’physical’ unit

overplot allow/prohibit overplotting

set overplot=1 to overplot (default no)

logX logarithmic scale

set logX=1 to use a log scale (default no)

logY logarithmic scale

set logY=1 to use a log scale (default no)

sizeX set the ’physical’ size of the array

the ’physical’ size of the array (default pixel numbers), defined by the center
of the two extreme pixels

sizeY set the ’physical’ size of the array

the ’physical’ size of the array (default pixel numbers), defined by the center
of the two extreme pixels

nan set =1 if NaN are present in the array

wedge set wedge=1 to draw a wedge (default no)

doContour draw contours

set =1 to draw contour instead of map (default no)

levels set the levels for the contours

the levels for the contours (default nContour, within plotLimitsZ)

labelContour label the contours

set =1 to label the contours (default no)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

Part II

Reference Manual

7. DATA ORGANISATION

7.1 Data input: the MB-FITS format

A complete description of the Multi-Beam FITS Raw Data Format is given in the reference document
APEX-MPI-IFD-0002. In this section, we only give a brief description of this file format.

7.1.1 The hierarchy for a full scan

For a given observing sequence, corresponding to one scan, a set of tables are generated and stored in a hier-
archical way in the MB-FITS format. Three tables are created on top of this hierarchy, where informations
related to the full scan are gathered:

• Primary header: here, some general informations are stored, such as telescope name, project ID, date
of observation start, versions of MB-FITS format and FitsWriter software

• SCAN-MBFITS: the header of this table contains a description of the scan pattern (type, geometry,
line length in case of a raster map...), the source name and coordinates, together with a description
of the referential used, and some generic informations about the telescope (coordinates, pointing
coefficients). In addition, a binary table lists the names of frontend-backend (hereafter FEBE) com-
binations in use for this observation.

• FEBEPAR-MBFITS: one such table is created for each FEBE in use (in general, only one FEBE is
active for bolometer observing). It contains the FEBE name and the number of available channels
for this FEBE in its header. The associated binary table gives all relevant information about the
instrument: relative gains, positions, gain/attenuation factors, polarisation angles...

7.1.2 Tables for each subscan

For each subscan within a scan, three tables are generated:

• MONITOR-MBFITS: this table gathers all the monitoring information sent by the control system
during the observation. Each datapoint has an associated timestamp in MJD. In particular, this moni-
tor stream contains commanded and actual telescope positions sampled every 48 ms. It also contains
data related to the weather conditions, the subreflector angle and position, and the LST values.

• DATAPAR-MBFITS: this table also contains the telescope positions, subreflector angles and posi-
tions, and LST values, but interpolated to the timestamps corresponding to the data stream. It also
contains a PHASE column, which can for example contains a succession of “ON” and “OFF” for a
wobbler-switching observation.

• ARRAYDATA-MBFITS: here the raw data are stored. While some basic informations are stored in
the header (e.g. central frequency of the observation), the binary table only contains two columns:

7.2. BOA DATA OBJECTS 47

the timestamps (in MJD), and a vector with length equal to the number of channels in use containing
the raw data for each integration.

Note: in case several FEBE are in use at the same time, then a DATAPAR table and an ARRAYDATA table
are generated for each subscan and for each FEBE.

7.2 BoA Data objects

The manipulation of data within BoA is done with data objects of one class that inherits from the DataEntity
class (Sect. 3.2; see also Section ??). Such objects contain the current version of the data, as well as
associated parameters related to the scan and to the bolometer array. On top of this, the DataAna and Map
classes define additional attributes, as described in the next subsections.

7.2.1 DataEntity

A DataEntity object has a number of attributes, listed in the following tables. Two of them are objects of
classes BolometerArray and ScanParameter.

BolometerArray

The BolometerArray object defines the attributes listed in Table 7.1. They are read in from the file, or com-
puted when reading, except for CurrChanList (contains the current list of channels on which any processing
or plotting function is applied) and Flags (can be altered by the user).

Table 7.1: Attributes of a BolometerArray object
Name Type Description

Telescope object see Table 7.2
FeBe string Frontent-Backend name
EffectiveFrequency float Observing frequency, in Hz
BeamSize int Beam size, in arcsec
NChannels int Total number of pixels in the instrument
Gain float array 1D array with relative gains (flat field)
Offsets float array relative (X,Y) offsets, in arcsec
Channel_Sep float array matrix of channel to channel separations, in arcsec
TransmitionCurve float array
Flags int array Flag value for each channel (0 = unflagged)
RefChannel int Reference channel number
NUsedChannels int Number of channels in use for this observation
UsedChannels int array List of channels in use for this observation
CurrChanList int array Current list of channel numbers

Telescope

Attributes of a Telescope object are shown in Table 7.2.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

7.2. BOA DATA OBJECTS 48

Table 7.2: Attributes of a Telescope object
Name Type Description

Name str Telescope name, e.g. APEX-12m
Diameter float Antenna diameter, in m
Latitude float Latitude, in deg
Longitude float Longitude, in deg
Elevation float Elevation, in m

ScanParam

Attributes of the ScanParam object (class ScanParameter) are listed in Table 7.3.

Data arrays

In addition to the scan parameters and bolometer array related informations, a DataEntity object contains
some general informations about the observation, and 2D arrays of data and related numbers, with sizes
number of pixels in use × number of integrations. These are described in Table 7.4.

Note: for observations performed with wobbler switching, pairs of ON–OFF integrations are extracted
from the Wobbler_Sta attribute, and the phase differences are computed. By default, after reading, only the
differentiated signals are stored in the Data attribute. The user can specify the phase number in the read
command, in order to get only the ’ON’ or the ’OFF’ data.

7.2.2 DataAna

On top of the DataEntity, the DataAna layer defines additional attributes, related to statistics and flagging
of the data. They are listed in Table 7.5.

7.2.3 Map

Finally, any kind of observation is stored in BoA in a Map object, that defines many methods for data
reduction (see the Appendix for reference). It also contains an attribute called ’Map’, of class Image,
where the results of a map-making routine are stored.

7.2.4 Storing a data object

At any time during a BoA session, the user can dump the content of the current data object to a file. It can
later be loaded again into BoA , in order to continue with the data reduction. This is done with:

boa> dump()
boa< I: current data successfully written to BoaData.sav

or:

boa> dump(’myMap.data’)
boa< I: current data successfully written to myMap.data

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

7.2. BOA DATA OBJECTS 49

Table 7.3: Attributes of the ScanParam object
Name Type Description

ScanNum int Scan number
ScanType string Scan type, e.g. ’FOCUS−Z
ScanMode string Scan mode, e.g. ’RASTER’
ScanDir string Scanning direction
Line_Len float Line length for a raster, in arcsec
Line_Ysp float Y-step between lines in a raster, in arcsec
Az_Vel float Scanning speed in Az, in arcsec/s
Object string Target name
Basis tuple Pair of strings describing basis frame -

e.g. (’RA−−−SFL’, ’DEC−−SFL’)
Coord tuple Target coordinates in basis frame
Date_Obs string Date of observation
Equinox float Equinox

Nula, Nule floats X, Y pointing settings at scan start
Colstart float Focus-Z setting at scan start
DeltaCA, DeltaIE floats Accumulated pointing corrections CA and IE

NObs int Number of subscans
SubscanNum int list Subscans numbers
SubscanIndex int array Integration numbers at subscans starts and ends
SubscanEpo float array Epochs of subscans starts, in year
SubscanTime float array LST times of subscans starts, in s
SubscanType string list Types of subscans - e.g. ’ON’, or ’REF’

WobUsed int Boolean: is a wobbler used?
WobCycle float Wobbler period, in s
WobblerPos float array Wobbler positions, in arcsec
WobThrow float Wobbler throw, in arcsec
WobblerSta string list Wobbler status
Nodding_Sta int array Nodding status
WobMode string Wobbler mode, e.g. ’SQUARE’
AddLonWT int Wobbler throw to be added in Az, in arcsec
AddLatWT int Wobbler throw to be added in El, in arcsec
OnOffPairs int list List of pairs of integration numbers (if wobbler)

Nint int Number of integrations
Baslon, Baslat float arrays Absolute coordinates in basis frame, in deg
Track_Az, Track_El float arrays Tracking errors in Az and El, in arcsec
Lon, Lat float arrays Offsets w.r.t. the source in Az and El, in deg
FocX, FocY, FocZ float arrays Subreflector positions in X, Y, Z, in mm
PhiX, PhiY float arrays Subreflector rotation angles in X and Y, in deg
Az, El float arrays Absolute coordinates in Az, El, in deg
Lonpole, Latpole float array Coordinates in user frame of basis pole
Rot float array Rotation angle between user and basis frames, in deg
MJD float array Timestamps in MJD, in days
UT float array Timestamps in UTC, in s
LST float array Timestamps in LST, in s
Flags int array Flagging in time domain (0 = unflagged)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

7.2. BOA DATA OBJECTS 50

Table 7.4: Other attributes of a DataEntity object
Name Type Description

FileName string Input file name
RefGain float Frontend gain/attenuation factor
JyPerCount float Counts to Jy conversion factor

Data float array Current version of the data
DataBackup float array Previous version of the data
DataWeights float array Relative weights of the datapoints
DataFlags array Flagging of individual datapoints (0 = unflagged)

CorMatrix float array Channel to channel correlation matrix
FFCF_Gain float array 1D array of relative gains (flat field) derived from skynoise
FFCF_CN float array Channel to channel correlated skynoise
SkyNoise float array Skynoise present in the signal

Table 7.5: Other attributes of a DataAna object
Name Type Description

ChanMean float array Mean values of signal per channel
ChanRms float array R.M.S of signal per channel
ChanMed float array Median values of signal per channel
ChanMean_s float array Mean values of signal per channel and per subscan
ChanRms_s float array R.M.S. of signal per channel and per subscan
ChanMed_s float array Median values of signal per channel and per subscan
flagValue int Currrent default flag value when calling a flagging routine
flagValueList int list Allowed values for flagging

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

7.3. DATA OUTPUT 51

to give another filename that the default BoaData.sav. Then to reload the data object, one has to do:

boa> dd = newRestoreData()

Note: it is not possible in its present state to apply this restore method to the default data object. Therefore,
after reloading a data object to a new variable (dd in the above example), one has to use the extended syntax
(Chapter ...) instead of the abbreviations defined in BoaShortcuts.py.

7.3 Data output

7.3.1 Converting the raw data

BoA provides a procedure to convert an MB-FITS file to a FITS file with the same format as for MAMBO-
ABBA data. The aim of this procedure is to be able to compare the results of a data reduction performed
with BoA with those obtained with existing packages (e.g. NIC, MOPSI). Note: This procedure has not
been extensively tested recently...

7.3.2 Saving a map

Once a mapping observation has been read in and processed with BoA , the user can store the results, i.e.
a map in sky coordinates, in a standard 2D FITS image, including a header with World Coordinate System
(WCS) infromations. This is done with the following command:

boa> data.writeFITS() # default file name: boaMap.fits
boa> data.writeFITS(’LABOCA_1234.fits’) # give a file name

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8. DEVELOPMENT

8.1 Basic programming rules

8.2 Adding classes

8.3 Adding methods

8.4 Adding Fortran90 code

FB040510

General

We are using Fortran 90/95 subroutines, wrapped to be called from python using the f2py package. This
is because f90 code executes much faster than python scripts. There are some subtelties to pay attention
to when wrapping fortran code, else you will add large overheads from the py-f90 interface, as arrays
are copied and reindexed. For an introduction to F90/95 (only minor differences between the two), I
recommend the compact and rather comprehensive (and free!) “Fortran 90 course notes”1 by AC Marshall
from the University of Liverpool. It contains all you probably need to know. I wrote a simple fortran
method in BoA/fortran/BoaTest1.f90 to illustrate some basic features and give you a chance to test the
wrapper without BoA. Look at its header for details. For an online F90/95 language reference2 the best I
found is at the NCSA resources page, describing IBM’s XL Fortran for AIX 8.1 – which is close to the
Intel compiler.

F90 in BoA

For BoA our general idea is to have one f90.so extension module, which includes all the f90 methods (called
subroutines and functions in fortran). This is necessitated by that the f90.data module, which contains much
of a scans data, is connected (through an “use data”) to the other f90 program modules, and therefore they
all need to be linked together.

The f90 methods may be split into different modules (classes) for convenience. We now have the first
operational modules BoaF1.f90, BoaChannelAnalyser.f90, BoaBaseLine.f90, and the data module BoaD-
ata.f90. Each module may include any number of subroutines or functions. The data module BoaData.f90
is like a common block that contains all the data which does not change during data reduction. All data
which does change is passed to the fortran subroutines as call arguments.

The BoaData.f90 (f90.data from python) module is filled in BoaDataEntity.FillF90. It must be refilled if
you change data object, else the fortran methods will work on a different scan. This re-filling must be
implemented still. Currently the f90.data is only filled upon read of a new data file.

The CVS directory BoA/fortran contains the fortran source code. You will need to wrap/compile the BoA

1http://math.nist.gov/W̃Mitchell/f90course/CourseNotes.pdf
2http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/share/man/info/en_US/xlf/html/lr02.HTM#CONTENT

8.4. ADDING FORTRAN90 CODE 53

modules on your local system (see below), since it links to local libraries that have no standard address.
This will create the extension module f90.so which you import to BoA. From the CVS directory BoA start
BoA, then

>>> from fortran import f90

This is how to import any module from a subdirectory, which for this needs to include an empty file
__init__.py

The python script fortran/ftest.py contains a series of calls to the fortran subroutines. To run it:

>>> read() # read in some scan
>>> op() # open plot device

[enter]
>>> execfile(’ftest.py’) # start the script

which is followed with lots of output. To illustrate the use of new python methods that use fortran, you find
BoA/TestFB.py, which you run like ftest.py. It goes through a number of data reduction steps and plots the
data.

Wrapping F90 code with f2py

To wrap the f90 modules to produce f90.so:

ifc -c -w svd.f90
f2py -c -m f90 BoaData.f90 BoaF1.f90 BoaChannelAnalyser.f90 BoaBaseLine.f90 svd.o

or on some installations alternatively:
f2py -c --fcompiler=intel -m f90 BoaData.f90 BoaF1.f90 BoaChannelAnalyser.f90 BoaBaseLine.f90 svd.o

The first command recompiles the svd.o. On the f2py line there are some diagnostic options you may add
if you debug your code:

-DF2PY_REPORT_ATEXIT : gives time statistics upon exit from python.
-DF2PY_REPORT_ON_ARRAY_COPY=1000 : reports when the f2py interface copies an array.
-DNUMARRAY : must be used for numarray support. Default is Numeric.

If the wrapping fails, one of the following may be wrong:

1. You have not initiated the ifc compiler properly. In your shell initialization file (e.g. .cshrc for tcsh) you
need

if (-e /opt/intel/compiler60/ia32/bin/ifcvars.sh) then
source /opt/intel/compiler60/ia32/bin/ifcvars.csh

endif

or something equivalent.

2. Your python path does not include the intel fortran compiler:

setenv PYTHONPATH ".:/opt/intel/compiler60/ia32/lib/:
/usr/local/lib/python2.3:
/usr/local/lib/python2.3/site-packages:
/home/bertoldi/bin:
/opt:
/usr/lib"

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.4. ADDING FORTRAN90 CODE 54

3. You use an old version of f2py.

<fortran> f2py -version
2.39.235_1644

Once you have successfully imported f90 in BoA, you can inquire about the use of a given method by
typing

print f90.f1.NAME.__doc__

Fortran attributes are called f90.data.name_of_attribute. To inquire which ones are available:

boa> print f90.data.__doc__
el - ’f’-array(218)
track_el - ’f’-array(218)
ffcf_gain - ’f’-array(120)
subscan_time - ’f’-array(4)
az_p - ’f’-array(109,3)
lst - ’f’-array(218)
lon_p - ’f’-array(109,3)
track_az - ’f’-array(218)
lat - ’f’-array(218)
az - ’f’-array(218)
lat_p - ’f’-array(109,3)
lst_p - ’f’-array(109,3)
array_gain - ’f’-array(120)
lon - ’f’-array(218)
ffcf_cn - ’f’-array(120)
ut_p - ’f’-array(109,3)
nodding_sta - ’i’-array(218)
subscan_index - ’i’-array(4)
subscan_num - ’i’-array(4)
weights - ’f’-array(0), not allocated
el_p - ’f’-array(109,3)
ut - ’f’-array(218)
wobbler_pos - ’f’-array(218)

They are filled in in BoaBusiness.py: BoaB.FillF90

Use f90 methods in BoA

To call a fortran method, here an example:

compressed_array,nmax = f90.f1.compress(array,flag_array,0)

Two objects are returned as a tuple, an array and an integer. They both are not in the call argument list,
they are hidden to python, but are listed in the f90 code call argument list – have a look at the source code.

Limitations

This particular example illustrates one of the limitations of wrapping f90 code: you cannot return an
array with a length that is determined upon execution. The wrapper needs to specify the size of an array
somehow. It does not have to be fixed, but specified through the size of an input attribute at least. In this
example we try to return an array that is a compression of the input array, determined by the condition
that the corresponding flag is 0. The trick to still do this here is to return a comressed_array with the

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.5. INTERFACING 55

same size as array, plus an integer telling the size of the compressed array, so that the final answer is
compressed_array[0:nmax].

Fortran vs. C-contiguous

If a Numeric array is proper-contiguous and has a proper type then it is directly passed to the wrapped
Fortran function. Otherwise, an element-wise copy of an input array is made and the copy, being proper-
contiguous and with proper type, is used as an array argument. There are two types of proper-contiguous
Numeric arrays: Fortran-contiguous arrays when data is stored column-wise, i.e. indexing of data as stored
in memory starts from the lowest dimension; C-contiguous when data is stored row-wise, i.e. indexing
of data as stored in memory starts from the highest dimension. For one-dimensional arrays these notions
coincide. To transform input arrays to column major storage order before passing them to Fortran routines,
one may use the function as_column_major_storage(<array>) that is provided by all F2PY generated ex-
tension modules, such as the BoA f90. If you call a fortran method repeatedly with the same input array,
you should convert the array first to avoid conversion by the wrapper interface on each call – which could
dominate the execution time here. If you add the option -DF2PY_REPORT_ON_ARRAY_COPY=1000
when wrapping, you will be informed on each copy that the wrapper interface performs. The option -
DF2PY_REPORT_ATEXIT gives an execution time summary upon exit that splits up the time used in
fortran and in the interface. If the interface time is large or comparable to the fortran execution time, your
code is not efficient because it copies arrays too often. Look at examples in BoaBaseLine.py, e.g.:

Data = f90.as_column_major_storage(self.Data.Data_Red_p)
Flag = f90.as_column_major_storage(self.Data.Data_Flag_p)
...
for i_ch in ch_range: # loop over channels and phases

for i_ph in ph_range:
Data = f90.baseline.addpoly(Data,Poly,Mean,Rms,i_ph,i_ch)

The input arrays are copied once into fortran-contiguous arrays before the loop, so in the loop there is no
overhead from copying. Note also the general scheme of calling a fortran method here: Data is in- and
output argument.

8.5 Interfacing

8.5.1 ScientificPython-2.4.5

ScientificPython is a collection of Python modules that are useful for scientific computing. Almost all
modules make extensive use of Numerical Python (NumPy,Numeric), which must be installed prior to
Scientific Python. Scientific constist of about one dozen modules, which contain methods written in Python
that may come handy, but may be slow. The following lists a number of them.

stat() statistics() command calculates the statistics for all the channels in the range. Using plotmean()
plotrms() we can plot mean and RMS values of each channels. The examples are as shows below:

You need to import Numeric for Scientific. You can access the methods by importing the class or all
methods:

>>> from Numeric import *
>>> import Scientific.Statistics
>>> Scientific.Statistics.median([1,2,3,5,6])
3.0

or alternatively

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.5. INTERFACING 56

Figure 8.5.1: Plotting the Signal for channels in the range.

>>> from Scientific.Statistics import *
>>> median([1,2,3,5,6])
3.0

Available method in class Scientific.Statistics:

moment(data, order, about=None, theoretical=1)
mean(data)
weightedMean(data, sigma)
variance(data)
standardDeviation(data)
median(data)
mode(data)
normalizedMoment(data, order)
skewness(data)
kurtosis(data)
correlation(data1, data2)

There are also two classes for histograms:

Histogram
WeightedHistogram(Histogram)

The following explains only those Scientific methods which are useful for Boa. Consult the scripts or the
(very sparse) documentation for more info.

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.5. INTERFACING 57

Figure 8.5.2: Plotting the Mean values of signal.

Scientific.Statistics.median

Description: Computes the median of a 1-d array.

Example:

>>> median([1,2,3,5,6])
3.0

Scientific.Statistics.mean

Description: Returns the mean (average value) of a 1-d array.

Example:

>>> mean([1,2,3,5,6])
3.3999999999999999

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.5. INTERFACING 58

Figure 8.5.3: Plotting the RMS values of signal.

Scientific.Statistics.correlation

Description: Computes the correlation coefficient between two 1-dim arrays a and b according to

cab =
〈(a− ā)(b− b̄)〉

〈(a− ā)2〉1/2〈(b− b̄)2〉1/2
(8.5.1)

Example:

>>> correlation([1,2,3,4,5],[1,2,3,4,5])
1.0
>>> correlation([1,2,3,4,5],[1,2,3,5,5])
0.96476382123773219
>>> correlation([1,2,3,4,5],[5,4,3,2,1])
-1.0

Scientific.Functions.LeastSquares

Description: General non-linear least-squares fit using the Levenberg-Marquardt algorithm and automatic
derivatives. The parameter model specifies the function to be fitted. It will be called with two parameters:
the first is a tuple containing all fit parameters, and the second is the first element of a data point (see below).
The return value must be a number. Since automatic differentiation is used to obtain the derivatives with
respect to the parameters, the function may only use the mathematical functions known to the module

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

8.5. INTERFACING 59

FirstDerivatives. The parameter parameter is a tuple of initial values for the fit parameters. The parameter
data is a list of data points to which the model is to be fitted. Each data point is a tuple of length two or
three. Its first element specifies the independent variables of the model. It is passed to the model function
as its first parameter, but not used in any other way. The second element of each data point tuple is the
number that the return value of the model function is supposed to match as well as possible. The third
element (which defaults to 1.) is the statistical variance of the data point, i.e. the inverse of its statistical
weight in the fitting procedure. The function returns a list containing the optimal parameter values and the
chi-squared value describing the quality of the fit.

Example:

>>> from Numeric import exp
>>> def f(param, t):
... return param[0]*exp(-param[1]/t)
...
>>> data = [(100, 4.999e-8),(200, 5.307e+2),

(300, 1.289e+6),(400, 6.559e+7)]
>>> print leastSquaresFit(f, (1e13,4700), data)
([8641551709749.7666, 4715.4677901570467], 1080.2526437958597)

Generated on Wed May 31 13:19:01 2006 for Boa by Doxygen

	I User's Manual
	Introduction
	Philosophy and basic structure

	Installing BoA
	Prerequisites
	Obtaining the installation script and packages
	Installation using the install.sh script
	Resuming an incomplete installation
	Installation FAQ
	Updating BoA

	Overview of BoA structure
	Input data
	Internal data handling

	Basic outline of BoA usage
	Starting up BoA
	Some useful BoA commands

	BoA User Guide
	Overview of how to use BoA
	User methods for data reduction and map making
	User methods for file reading
	User methods for controlling graphics display devices
	User methods for displaying data
	MB-Fits to FITS file conversion
	Scripts
	Commands in alphabetical order
	Commands in functional order
	Abbreviations

	BoGLi : the BoA Graphic Library
	Introduction
	Command handling
	Device handling
	Plotting graphics
	Keywords

	II Reference Manual
	Data Organisation
	Data input: the MB-FITS format
	BoA Data objects
	Data output

	Development
	Basic programming rules
	Adding classes
	Adding methods
	Adding Fortran90 code
	Interfacing

