
BoA User Manual : APEX-MPI-MAN-0018

Version: 2.4 (09.03.2007)

Authors: A. Beelen, F. Bertoldi, R. Schaaf, F. Schuller, C. Vlahakis, et al.

BoA – The Bolometer Data Analysis Software

User and Reference Manual

Purpose

The purpose of this document is to provide a description of the design and usage of the Bolome-
ter Analysis (BoA) software package that was designed for the Large APEX Bolometer Camera
(LABOCA) at APEX.

1

Copyright © 2003 – 2006 MPIfR, AIfA, AIRUB
BoA is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

BoA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with BoA; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

1

2

The GNU General Public License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

2

3

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or dis-
play an announcement including an appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announce-
ment.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole

3

4

which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customar-
ily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing

4

5

the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and “any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

5

6

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR

THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE

THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL

ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6

7

Document history

Revision Date Author Sections/Pages affected Remarks

Internal document history

Revision Date Author Sections/Pages affected Remarks

v1.9 30.07.06 CV all version prepared for official approval

v1.10 01.08.06 CV all minor changes only

v1.11 02.08.06 CV initial pages Document history, Related documents,
and Definintions added

v2.0 08.12.06 CV all new version created with different
chapter structure plus updates. Signifi-
cant changes to Chapters 3 (Cookbook)
and 4 (Manual).

v2.1 15.12.06 CV 3 recipes for map, point and focus now
present.

v2.2 01.03.07 CV ch4 ch2 (install) also updated by RS

v2.3 08.03.07 CV ch3 & 4 re-arrangement and updating

v2.4 09.03.07 CV all aesthetic changes to all plus updating
of Ch4

Related documents

RD-01 BoA User’s manual

RD-02 LABOCA design description, APEX-MPI-DSD-0016

RD-03 Muders, Hafok, Wyrowski et al., 2006, A&A in press

RD-04 The BoA Project: definition, F. Bertoldi et al. (June 2002)

RD-05 A future bolometer data analysis software: requirements and definition, F. Bertoldi
et al. (June 2002)

RD-06 Initial BoA web site: http://www.openboa.de

RD-07 LABOCA wiki: http://www.astro.uni-bonn.de/ abeelen/labocawiki

7

8

Definitions

For the following acronyms the understanding shall be:

AIfA Argelander Institut für Astronomie der Universität Bonn

AIRUB Astronomisches Institut der Ruhr-Universität Bochum

APECS APEX Control Software

APEX Atacama Pathfinder Experiment

ASZCa APEX SZ Camera

BoA Bolometer Array Analysis Package

BoGLi BoA Graphics Library

LABOCA Large APEX Bolometer Camera

MAMBO Max-Planck Millimeter Bolometer

MBfits Multi-beam fits format

MPIfR Max-Planck-Institut für Radioastronomie, Bonn

MOPSIC MAMBO data reduction software

NIC IRAM bolometer reduction package

SURF SCUBA data reduction software

8

Contents

I User’s Manual 1

1 Introduction 2

1.1 Philosophy and basic structure . 3

2 Installation 6

2.1 Prerequisites . 6

2.2 Conflicts with other software . 9

2.3 Obtaining the installation script and packages . 9

2.4 Installation using the install.sh script . 9

2.5 Resuming an incomplete installation . 12

2.6 Installation FAQ . 12

2.7 Updating BoA . 13

3 BoACookbook 15

3.1 Starting up BoA . 15

3.2 Getting started . 15

3.3 Ending a session . 16

3.4 Getting Help . 16

3.5 Example of making a map . 16

3.6 Example of solving a pointing . 18

3.7 Example of solving a focus . 18

3.8 Demonstration scripts . 19

4 BoAUser Manual 20

4.1 About BoA . 20

4.2 BoA usage . 21

i

CONTENTS ii

4.3 User methods for making maps . 23

4.4 User methods for pointing . 28

4.5 User methods for focus . 28

4.6 User methods for file reading . 28

4.7 User methods for controlling graphics display devices 28

4.8 User methods for displaying data . 29

4.9 MB-Fits to FITS file conversion . 35

4.10 Miscellaneous methods . 35

4.11 Scripts . 36

4.12 Commands in alphabetical order . 38

4.13 Commands in functional order . 41

4.14 Abbreviations . 44

5 BoGLi: the BoAGraphic Library 46

5.1 Introduction . 46

5.2 Command handling . 46

5.3 Device handling . 47

5.4 Plotting graphics . 49

5.5 Keywords . 58

II Reference Manual 61

6 Data Organisation 62

6.1 Data input: the MB-FITS format . 62

6.2 BoAData objects . 63

6.3 Data output . 67

7 Development 69

7.1 Basic programming rules . 69

7.2 Adding classes . 69

7.3 Adding methods . 69

7.4 Adding Fortran90 code . 69

7.5 Interfacing . 73

ii

Part I

User’s Manual

1

1. INTRODUCTION

The Atacama Pathfinder Experiment (APEX)1 is a 12-meter radio telescope at the best accessible site
for submillimeter observations, Llano de Chajnantor in Chile’s Atacama desert.

Figure 1.0.1: The APEX telescope at Chajnantor in November 2003

LABOCA is a 295-channel facility bolometer camera for APEX. It operates in the 870 µm atmo-
spheric window and is to be commissioned in September 2006. It was built at the MPIfR bolometer
lab by Dr. Ernst Kreysa and his staff.

BoA is a newly designed software package for the reading, handling, and analysis of bolometer array
data. Its design and implementation is a collaborative effort of scientists at the MPIfR, AIfA and
AIRUB that was started in 2002 and in part funded through a "‘Verbundforschung"’ grant to the MPIfR
and RAIUB. BoA is an APEX facility software as part of the LABOCA instrument. The primary goal
of BoAis to handle data from LABOCA at APEX, both for online visualization and offline processing.
BoA could also be used to process data acquired with other instruments such as ASZCa at APEX or
MAMBO at the IRAM 30-meter telescope. BoA includes most of the relevant functionalities of the
current reduction packages (MOPSIC, NIC, SURF). The major difference is that BoA is written in a
programming environment that is easier to modify, maintain, and re-use. Moreover, BoA naturally
interfaces with APECS and the MBfits format.

1http://www.mpifr-bonn.mpg.de/div/mm/apex/

2

http://www.mpifr-bonn.mpg.de/div/mm/apex/

1.1. PHILOSOPHY AND BASIC STRUCTURE 3

1.1 Philosophy and basic structure

1.1.1 Philosophy

BoA is designed with two major goals in mind: to provide a comprehensive tool for the reduction
and analysis of data from the new generation of bolometer arrays, and to facilitate the extension and
modification of the software by any user. BoA is intended to combine a simple and intuitive usage
with the coverage of all aspects of data reduction, from raw data to final images. The natural choice
for the creation of BoA is object oriented programming.

1.1.2 Programming language: Python

Most of BoA is written in Python, an interpreted, interactive and object-oriented programming lan-
guage. Python does not adhere to all concepts of object-orientation as strictly as, e.g., C++ does. The
resulting shortcomings can be overcome by sticking to some basic programming rules.

Python is a scripting language and as such allows BoA to be quickly and easily extended by the user.
It also facilitates the wrapping of code written in C/C++ or FORTRAN. To improve execution speed,
BoA computing-intensive tasks are therefore written in Fortran95.

1.1.3 Basic structure

BoA consists of a set of classes, most of which are defined in dedicated modules (files). In addition, a
few functions are defined in separate modules. A detailed description of all classes and methods can
be found in Sec. 3. The subdivision was chosen to reach a high modularity and an intuitive grouping
of related functionalities within one class.

Two kinds of classes may be distinguished:

• Data classes: The DataEntity class defines the data structure which is used within BoA. Objects
of this class contain the raw and reduced data and all relevant parameters of a single scan. This
class also defines methods to fill the data object from an MBFITS file. Then, the DataAna
class inherits from DataEntity: it contains all data related methods, plus some methods for
data analysis (e.g. flagging, baseline). Then, the Map class inherits from DataAna: it contains
all methods defines in DataEntity and DataAna, plus specific methods for map processing and
display. Finally, classes dedicated to various observing modes inherit from the Map class: they
contain additional methods specific to a given type of observation. Table 1.1 lists BoA data
classes, with module names and short descriptions of their responsibilities.

• Peripheral classes: All other classes provide methods which either are used by data objects (e.g.
Image is used within Map objects), or provide functionalities on the BoA level (e.g. MessHand).
These classes are summarized in Table 1.2.

Finally, a few functions are defined in separate modules (listed in Table 1.3), which do not define
any class. Thus, these functions can easily be imported and run from any level. In particular, the
BoAGraphic Library (BoGLi) is defined in a collection of modules, which can be imported at the
python level and do not require BoA. A description of BoGLiis given in Sect. 5.

3

1.1. PHILOSOPHY AND BASIC STRUCTURE 4

Table 1.1: BoA data classes
class name module purpose

DataEntity BoaDataEntity.py data and parameters storage

DataAna BoaDataAnalyser.py general data analysis methods

Map BoaMapping.py map reduction

Focus BoaFocus.py focus reduction

Point BoaPointing.py pointing reduction

Sky BoaSkydip.py skydip reduction

Table 1.2: Other BoA classes
class name module purpose

Image BoaMapping.py image and axis description

Error BoaError.py

Help BoaHelp.py online help

MessHand BoaMessageHandler.py message handling

MamboMBFits MamboMBFits.py MAMBO to/from MB-Fits conversion

Timing Utilities.py benchmarking utilites

In addition, a number of utility and computing routines are written in Fortran modules. These routines
are used within Python methods, and should in principle not be called directly by a BoA user.

4

1.1. PHILOSOPHY AND BASIC STRUCTURE 5

Table 1.3: Other BoA modules
module name purpose

BoGLi (see Sect. 5) Graphic library

Utilities.py (see Sect. ??) collection of utilities

BoaConfig.py (see Sect. ??) global parameters definitions

BoaSimulation.py LABOCA data simulator

5

2. INSTALLATION

This section describes how to install BoA and all required additional software packages, as well as
how to update an existing BoA version.

2.1 Prerequisites

So far, BoA has been installed and tested on Mac OS X and on the following LINUX distributions:

• SuSE 10.0

• Scientific Linux 4.2

• Fedora Core 3

• Debian sid

The following software packages must be installed on a system to be able to install and run BoA. (The
given version numbers indicate the versions that where used during development and tests with the
respective LINUX distribution.)

2.1.1 SuSE 10.0

Table 2.1: Prerequsites for SuSE 10.0
Package Version

gcc / gcc-c++ 4.0.2

compat-g77 3.3.5

readline-devel 5.0

libpng-devel 1.2.8

xorg-x11-devel 6.8.2

findutils-locate 4.2.23

subversion 1.2.3-2

6

2.1. PREREQUISITES 7

Depending on the original setup, some or all of the packages specified in table 2.1 may already be
installed on your system. Use SuSE’s package manager YaST to check if the necessary packages are
present and to install or update them if necessary.

2.1.2 Scientific Linux 4.2

Table 2.2: Prerequsites for Scientific Linux 4.2
Package Version

gcc / gccc-c++ 3.4.4

gcc-g77 3.4.4

readline-devel 4.3

libpng-devel 1.2.7

xorg-x11-devel 6.8.2

findutils 4.1.20

subversion 1.1.4-2

All packages listed in table 2.2 are part of a standard “Workstation” installation. If a package is
missing or needs to be updated, use the package manager yum that comes with Scientific Linux.

2.1.3 Fedora Core 3

Table 2.3: Prerequsites for Fedora Core 3
Package Version

gcc / gccc-c++ 3.4.4

gcc-g77 3.4.4

readline-devel 4.3

libpng-devel 1.2.8

xorg-x11-devel 6.8.2

findutils 4.1.20

subversion 1.1.4-1.1

All packages listed in table 2.3 are part of a standard “Workstation” installation. If a package is
missing or needs to be updated, use Fedora’s package manager yum.

NB: Tests were performed with Fedora installed in a VMWare virtual machine. With its original
kernel (version 2.6.9), Fedora run extremley slow. This is a know problem with Fedora Core 3 under
VMWare. Updating to kernel version 2.6.12 improved the performance considerably.

7

2.1. PREREQUISITES 8

2.1.4 Debian sid

Table 2.4: Prerequsites for Debian sid
Package Version

gcc / gccc-c++ 4.1.1-11

compat-g77 3.4.6-10

readline-devel 5.1-7

libpng-devel 1.2.8rel-5.2

xorg-x11-devel 1.0.0-8

findutils 4.2.28-1

subversion

If a package listed in table 2.4 is missing or needs to be updated, use Debian’s package manager apt.

For any questions related with Debian, contact Alexandre Beelen.

2.1.5 Mac OS X

BoA has also been successfully installed and running on Apple Macintosh computers. Successful
installations were done on a G4 laptop (Powerbook G4 550 MHz) and a G5 desktop (Powermac G5
2x1.8 GHz), under Mac OS X 10.3.5 to 10.3.9. BoA is also running on the new Intel Mac (installed
and tested on a MacBook Pro 2.0 GHz, with Mac OS X 10.4.6). For any question related to BoA on
Mac OS, please contact FredericSchuller (schuller@mpifr-bonn.mpg.de).

The prerequisites specified in table 2.5 refer to Mac OS X 10.4.6.

Table 2.5: Prerequsites for Mac OS X
Package Version

XCode development tools

python 2.3.5

gcc 4.0.1

gfortran i386-apple-darwin8.7.1 gcc-4.2-20060805

fink toolkit

swig 1.3.20

numeric-py23 23.1

readline

libpng3

8

2.2. CONFLICTS WITH OTHER SOFTWARE 9

2.2 Conflicts with other software

During the installation of BoA described in section 2.3, a set of programs and libraries (called external
packages) that BoA needs is installed. This makes a complete installation of BoA more or less self-
contained and reduces the chance of conflicts with other software installed on your system.

However, the behaviour of a system is not only determined by the set of software that is installed on
it, but also by the environment that is definded both system-wide and on a per-user basis in various
startup scripts. (For a complete list of the startup scripts consult the documentation of your system;
most important are the startup scripts of the shell in use. See man bash and man csh)

During the installation of BoA, the installation script tries to set up an environment that allows a
smooth installation. When running boa, BoA’s start-up scripts .boarc.sh and .boarc.csh try the same.
However, there may be situations when this is not successfull. If this is the case, careful inspection
of the environment must be performed. (During the development phase of BoA, running BoA failed
reproducably on one particular system; after scrutinizing various startup scripts, the cause turned out
to be a startup script for IRAF, that changed the C and Fortran compilers. After commenting out the
IRAF related lines, BoA run without any further problems.)

2.3 Obtaining the installation script and packages

The command

svn checkout boa-install

will download the external packages and the installation script install.sh (written by Alexandre Beelen,
Thomas Jürges, Frederic Schuller, and Reinhold Schaaf) from BoA’s Subversion repository to the
directory boa-install in your current dirctory. The directory boa-install will be created if not allready
present.

You are now ready to start the installation. (The BoA software itself is not downloaded at this stage.
It will be downloaded from the Subversion server during the installation.)

2.4 Installation using the install.sh script

Please note that the following instructions relate to the installation of BoA under Linux. For any
question related to BoA on Mac OS, please contact FredericSchuller (schuller@mpifr-bonn.mpg.de).

2.4.1 Running the install.sh script

Before running the install.sh installation script make sure that you have fulfilled the prerequisites
described in Sect. 2.1!

1. Go to the directory where you have downloaded the openboa directory and files. Change into
the directory install where the installation script install.sh is stored.

9

2.4. INSTALLATION USING THE INSTALL.SH SCRIPT 10

2. Run the install.sh script by typing:

./install.sh

This begins the process of installing BoA.

The script will prompt you for some paths (reasonable defaults are offered). If you don’t want
to use the default path, then please enter your chosen path, e.g. /home/smueller/BoA, when
prompted. (Please note that you have to specify the full path name explicitely: ~/BoA will not
work!)

The script will create in this installation directory some sub-directories, where all necessary
files will be installed. The required disk space is about 200 MB.

You will also be prompted to enter yes (y) or no (n) for the installation of each software pack-
age. For a fresh installation, you should install every package included (even if, say Python, is
allready present on your system).

If you want to install all included packages, you can run the installation by

./install.sh -all

The install script will prompt you considerably less often.

Skipping installation of packages is useful if you resume an aborted installation (see below). If
you wish to, you can try to see whether BoA works with your preinstalled versions of software;
however, that is at your own risk!

3. After the installation is complete, type

source ~/.boarc.sh (if you are working in bash)

or

source ~/.boarc.csh (if you are working in csh).

4. You can now run BoA by typing boa at the prompt!

2.4.2 Details of the installation process

The installation consists of three stages, all of which are performed by the installation script:

• Installation of the external packages necessary for BoA

• Installation of BoA itself, including documentation and example FITS files

• Installation of BoA’s initialization files .boarc.sh and .boarc.csh

Below you find a description of each of these three stages.

After the installation, you will find a installation log in install/build.stat. If the installation fails,
the install script will tell you that something went wrong and give you a place where you can find
information related with the failure. In addition, you can consult install/build.stat for information
about the earlier steps of the installation.

10

2.4. INSTALLATION USING THE INSTALL.SH SCRIPT 11

Installation of external packages

The installation script will install the following external packages:

Table 2.6: External packages
Package Version

Python 2.3.2

Numeric 23.1

numarray 0.9

swig 1.3.23

Intel FORTRAN 8.1

scipy_distutils 3.3_33.571

f2py 2.44.240_1892

pgplot 5.2

pPGPLOT 1.3

slalib

pySLALIB 0.4

blas / lapack

cfitsio 2.49

pCFITSIO

BoA-FFTW-Numpy 1.0

mpfit

wcslib 4.1

dchelper

apexFitsWriter

apexCalibrator

The installation script prompts you for the location of the external packages. The default should
allways be correct.

Next, you are prompted for the directory where BoA is to be installed. If this directory allready exists,
you must confirm that choice. (This case is necessary to resume an aborted installation or to update
the BoA software itself. In all other cases, install to a new directory!)

The script then installs all external packages into this directory.

For some packages, (e.g. scipy_obsutils) you are prompted whether you want the package to be
updated via CVS. This may not be necessary, so you can safely answer n. If you do update, the
installation script provides you the necessary information (CVS login and password). Be aware that
the CVS server may be slow or even down. If this is the case, you are prompted after a timeout of
about 2 min whether you want to proceed without the CVS update. If you are nervous, cancel the
installation with Ctrl-C and resume the installation (see below).

11

2.5. RESUMING AN INCOMPLETE INSTALLATION 12

Installation of BoA

When the installation of the external packages is complete, the BoA software itself is installed. Since
it is not included in the boa-install download, it is downloaded from the BoA repository now. (Please
be aware that you may have to use your own Subversion login and password here!)

The script prompts you for a directory, where BoA is to be installed. You can choose any accessible
directory.

After the installation of the BoA software, the documentation and example FITS files are downloaded
from the BoA repository and installed. Again you are prompted whether and where you want these
features to be installed.

Installation of BoA’s initialization files

As last step, the script installs the initialization files .boarc.sh and .boarc.csh to your home directory.
These scripts define a runtime environment for BoA (setting shell variables, paths, and aliases) for
bash (.boarc.sh) and csh (.boarc.csh). Before running BoA, type

source ~/.boarc.sh (if you are working in bash)

or

source ~/.boarc.csh (if you are working in csh)

You may want to add this to your shell’s startup script.

2.5 Resuming an incomplete installation

To resume an incomplete installation, run

install/install.sh

again. When prompted for the directory to which BoA is to be installed, specify the same directory as
in the aborted installation. (Do this even if you will not install any external packages; the information
is needed for the initialization files!)

You can then safely skip all installation steps, that where performed successfully in the last installation
run.

Please be aware that you are prompted for the variable PGPLOT_DIR after skipping the installation
of pgplot. A reasonable default is offered. However, if you want to use a pre-installed pgplot, you can
specify this here.

2.6 Installation FAQ

2.6.1 BoA fails to start

• ImportError: No module named fUtilities

12

2.7. UPDATING BOA 13

the fortran modules have not been compiled. Go to the fortran directory and type make

• ImportError: libifport.so.x

you dont have the fortran librarie in you $LD_LIBRARY_PATH, please source the boarc.xx file
or check your installation.

2.6.2 I can’t open a Graphical Device

• check the pgplot and p_pgplot installation

• if trying to output png files, make sure that libpng was present when compiling pgplot.

2.6.3 Reading a MBFits file fails

• check the cfitisio and pcfitsio installation

• check that the version of MBFits.xml/$MBFITSXML you are using match the file you are
trying to read

2.7 Updating BoA

Depending on the changes in BoA that make an update necessary (or desirable), an update of BoA
only or a complete update (external packages and BoA) may be necessary. Unfortunately, presently
there is no systematic way to find out whether a update of the external packages is necessary. The best
choice may be first to try an update of BoA only, and if you experience problems when running BoA
after that update, make a complete update of the external packages and BoA.

Updating BoAonly

Examine the shell variable BOA_HOME_BOA that is set in the initialization files ~/.boarc.sh
and ~/.boarc.csh, to find out, where BoA is installed. Move to this dirctory:

cd $BOA_HOME_BOA

Update BoA from the BoA repository by typing

svn update

Change to the fortran subdirectory and compile BoA’s Fortran modules:

cd fortran
make clean all

13

2.7. UPDATING BOA 14

Updating external packages and BoA

If you experience problems when running BoA after updating BoA only, update the external packages
as well. For that, follow the instructions in section 2.3 to obtain a new installation script and the
external packages from BoA’s Subversion repository. Then follow section 2.5 to replace the external
packages of your current installation that need to be updated. Do not forget to update BoA itself as
described in the preceding section.

If this does not result in a working installation, do a fresh installation according to section 2.4, possibly
into a new directory.

14

3. BoACOOKBOOK

This section describes how to start up BoA for the first time and describes some typical BoA sessions,
including making a map and solving a pointing and focus. These example sessions are intended to act
as recipes to allow the beginner or occasional user to get on air quickly. Users already familiar with
the content of this cookbook can find more detailed information in Chapter 4.

3.1 Starting up BoA

The most common way to invoke BoA is to simply type boa at the command prompt. BoA then prints
a welcome message providing version information and changes the prompt to the boa> prompt. (Note
that you are nevertheless still in the interactive Python layer).

When BoA is initiated it imports a set of modules, instantiates the most essential objects and makes
the respective methods available using the start script BoaStart.py.

In certain circumstances, more advanced users may wish to invoke BoA via a Python session. This
can be done in the following ways:

• start a Python session and at the Python prompt type

>>> from BoaStart import *

• call Python in interactive mode (-i) with the file BoaStart.py

python -i /home/user/boa/BoaStart.py

where /home/user/ is the user path to the boa directory.

3.2 Getting started

open() % 1
indir(’/home/user/data/’) % 2
ils() % 3
proj(’projectID’) % 4
read(’filename’) % 5

A typical BoA session will usually require a data file as input and a graphic output device. Command
1 opens the default graphics device (pgplot). Command 2 sets the desired input directory, i.e. in this

15

3.3. ENDING A SESSION 16

case the input data file is located in a directory called /home/user/data/. The content of this directory
can then be listed (command 3). The project ID can also be set (command 4) so that filenames may
subsequently be described by just the observation number. Command 5 then reads in the input data
file.

Note, these commands and those used in the sections below are abbreviations for the full user method
names, as is described in Section 4.2.1.

3.3 Ending a session

To end a session you can first close the graphics device by typing

close()

then end the BoA session by typing ctrl+d.

3.4 Getting Help

You can get help on a BoA command() at any time by typing

print command.__doc__

at the prompt.

3.5 Example of making a map

open() % 1
indir(’/home/user/data/’) % 2
ils() % 3
proj(’T-77.F-0002-2006’) % 4
read(’59491’) % 5
signal() % 6
signal(1) % 7
mapping() % 8
medianBaseline() % 9
plotRmsChan() % 10
flagRms(above=1) % 11
flagRms(below=0.2) % 12
updateRCP(’jup-44830-32-improved.rcp’) % 13
flagPos(radius=150.) % 14
base(order=1) % 15
medianNoiseRemoval() % 16
plotRmsChan() % 17
flagRms(above=0.5) % 18
plotRmsChan() % 19
flagC([140,227]) % 20

16

3.5. EXAMPLE OF MAKING A MAP 17

despike() % 21
computeWeight() % 22
unflag(flag=5) % 23
mapping() % 24
doMap(system=’EQ’,sizeX=[83.9,83.73],sizeY=[-5.48,-5.28],oversamp=5.) % 25
smooth(6./3600.) % 26
mapdisp(caption=data.ScanParam.caption()) % 27
close() % 28

3.5.1 Setting up and accessing the data

The initial steps for starting up a typical session were described in Section 3.2. Command 1 opens the
default graphics device and Command 2 sets the desired input directory. The content of this directory
is then listed (command 3). The project ID can then be set (command 4) so that filenames may
subsequently be described by just the observation number (in this example the file-naming convention
is for LABOCA data, and consists of the APEX project ID (T-77.F-0002-2006) and the observation
number). Command 5 then reads in the input data file for observation 59491.

3.5.2 Visusalising the data

To get a first look at the data you can use command 6 to plot the time series of the data for each pixel,
or command 7 to look at the time series of the data for an individual pixel. You can also make a rough
map using command 8. These commands will be used again (see below) when the data is processed.

3.5.3 Basic Processing and Analysis

Usually the processing of the data will begin with subtracting a baseline. This is done with command
9, where the median value per channel and per subscan is removed. To see the data after baseline
subtraction you can use commands 6 and 7 again. Next, command 10 plots the RMS value versus
pixel (channel) number. Commands 11 and 12 then flag pixels with RMS values which are higher or
lower than the given value as bad. At this point you can use command 10 again to view the remaining
unflagged data.

Command 13 reads in the rcp file for calibration. Command 14 then flags the area in which source
signal is present, and commands 15 and 16 remove a baseline (using a polynomial fit) and the median
noise value. The new distribution is then checked with command 19.

Bad channels can be flagged using command 20, and the data then despiked (command 21). If neces-
sary, the despiked data can be examined using commands 6 and 7. Before producing a map the data
should be weighted, in this case each channel weighted as the inverse of the square root of the rms of
that channel (command 22). Command 23 then unflags the previously flagged source position.

There are then a number of ways to produce a final map. Command 24 produces a quick map in
Az-El coordinates. Alternatively command 25 produces a map in EQ coordinates. See Chapter 4 for
optional arguments for these and other methods. The map may then be smoothed (command 26) and
this smoothed map displayed (command 27).

17

3.6. EXAMPLE OF SOLVING A POINTING 18

3.6 Example of solving a pointing

open() % 1
indir(’/home/user/data/’) % 2
proj(’T-77.F-0002-2006’) % 3
read(’42947’) % 4
signal() % 5
signal(1) % 6
mapping() % 7
medianBaseline() % 8
mapping(oversamp=3) % 9
solvepointing(plot=1) % 10
clear() % 11
read(’46117’) % 12
medianBaseline() % 13
medianNoiseRemoval() % 14
plotRmsChan() % 15
flagRms(above=20) % 16
mapping(oversamp=3) % 17
solvepointing(plot=1) % 18
close() % 19

The above recipe shows a typical session to solve a pointing. As usual (see Section 3.2) we begin by
opening a graphics display device, setting the input directory, and setting the project ID (commands
1,2 and 3). The data file containing the pointing observation is read in (command 4), in this case a
strong pointing source (Jupiter). As a first look at the data, the time series of the data for each pixel
(command 5) or individual pixel (command 6) can then be plotted. Likewise a rough first-look map
can be made (command 7). To construct the map on which to solve the pointing, the median baseline
is first removed (command 8) (to see how the signal looks now you can repeat commands 5 and 6).
Finally the pointing map is constructed (command 9) and the pointing solved (command 10).

If the pointing source is fainter (in this case an observation of Uranus), some additional steps could
be taken. Following the above example, a graphics display window is already open so we can clear
the display using command 11. Command 12 then reads in the data file containing the observation of
Uranus. Again, first looks at the data can be made using commands 5, 6 and 7. The median baseline
is then removed (command 13), and this time the median noise value is also removed (command 14).
You can then check at what RMS most channels are using command 15, then use command 16 to flag
channels with RMS values above a certain value (in this case an RMS of 20). Command 15 can then
be repeated to see how the data looks now. The pointing map can then be constructed (command 18)
and the pointing solved (command 18). Command 19 then closes the graphics display device.

3.7 Example of solving a focus

open() % 1
indir(’/home/user/data/’) % 2
proj(’T-77.F-0002-2006’) % 3
read(’43275’) % 4
solveFocus() % 5

18

3.8. DEMONSTRATION SCRIPTS 19

read(’46118’) % 6
medianBaseline() % 7
medianNoiseRemoval() % 8
solveFocus() % 9
close() % 10

The above recipe shows a typical session to solve a focus. As usual (see Section 3.2) we begin by
opening a graphics display device, setting the input directory, and setting the project ID (commands
1,2 and 3). Command 4 the reads in the data file, in this case for a strong source (Jupiter). Command
5 then solves the focus. Command 6 then reads in a new data file, this time for a fainter source
(Uranus). This time the median baseline and median noise levels are removed before solving the
focus (commands 7, 8 and 9).

3.8 Demonstration scripts

The recipes described in Sections 3.5, 3.6 and 3.7 form the basis of three example scripts
which are provided in order to demonstrate some of the basic functionalities of BoA. These
are: ExampleMap.py, ExamplePointing.py and ExampleFocus.py and can be found in the directory
/home/user/boa/examples/. Run the scripts by typing:

execfile(’/home/user/boa/examples/ExampleMap.py’)

19

4. BoAUSER MANUAL

In this chapter you will find information about the structure of BoA, how BoAcan be used, together
with detailed descriptions of user methods. Since many user methods have an abbreviated form, these
are listed in Section 4.14.

4.1 About BoA

In this Section we give a basic overview of the structure of BoA. Section 4.1.1 gives a brief introduc-
tion to the raw data file format, and Section 4.1.2 shows an overview of the data structure within BoA.
More in-depth descriptions are given in Chapter 6.

4.1.1 Input data

The data acquired at the APEX telescope are stored in a new file format, known as the MB-Fits format
(for Multi-Beam FITS format, see the reference document APEX-MPI-IFD-0002 by Hatchell et al.
for details). These files contain:

• the raw data as provided by the Frontend-Backend in use at the telescope

• data associated parameters: time of the observations, positions on the sky...

• a description of the complete Scan (eg. for a map: number of lines, steps between lines...)

• parameters of the receiver channels in the array: relative positions, relative gains

A more complete description of the input data format is given in Sect. 6.1.

4.1.2 Internal data handling

Taking full advantage of the object-oriented nature of Python, BoA handles data by means of objects
of various classes. The primary class for data storage and manipulation is called DataEntity (see also
Section ??). This class allows to store the raw data and associated parameters, and it provides methods
relevant for any kind of observations (e.g. reading data from an MB-FITS file, plotting the signal as
time series, plotting the telescope pattern). The most important attributes of this class are:

• BolometerArray: here, the relative positions and gains of the receiver channels are stored, as
well as generic informations about the instrument and telescope (name, diameter, coordinates...)

20

4.2. BOA USAGE 21

• ScanParam: this contains the data associated parameters: coordinates of each point in several
systems, timestamps (in LST and MJD), subscans related informations

• Data: this is a 2D array (time × bolometer) which contains the current version of the data. At
time of reading, the raw data are stored there; the content of this array is then altered by any
processing step

• DataFlags, DataWeights: 2D arrays, with same size as Data, where flagging values and relative
weights are stored for each individual data point

For processing different types of observations, BoA then provides several classes which inherits from
DataEntity. Inheritance allows to define a class which contains all attributes and methods of the parent
class, plus some specific attributes/methods. The inheritance scheme in BoA is as follows:

DataEntity < DataAna < Map < Point < Focus

When BoA is started, one object of class Focus is created with name data; this is the current data
object, on which all reduction procedures can be applied. Additional objects of any data class can be
created by the user within one BoA session. Then, applying processing methods to a data object with
a different name that data requires to enter the full syntax (see Chapter ...), including the full name of
the method, as opposed to the shortcuts described in Chapters 3 and 4.

Note: Python ensures no real difference between private and public attributes. There are only hidden
attributes but this hiding can be overcome easily. Therefore the user might set any attribute directly
and call any method. This is not advisable and may easily corrupt the whole BoA session. It is more
recommendable to just use those methods for which the start script BoaStart.py provides abbrevia-
tions.

4.2 BoA usage

4.2.1 Methods

BoA tasks are accessed by directly calling the appropriate methods from the interactive Python layer.
This ensures the full availability of all Python and ppgplot facilities. As the method names to be called
from the Python layer may be rather long, the start script BoaStart.py provides a set of convenient
abbreviations for those methods which are meant to be called directly by the user (“public” methods).
We will therefore refer to these as user methods, a full list of which can be found in Section 4.14.

Example:
The name of the method to open a new graphic device is DeviceHandler.openDev and it
can be called by

DeviceHandler.openDev()

or more conveniently by the abbreviations (user methods)

open() or op()

(note that the parentheses are always mandatory).

21

4.2. BOA USAGE 22

4.2.2 Arguments

Nearly all user methods require arguments to be passed. Nevertheless, the methods provide default
arguments which thus may be omitted. In this case many methods just supply status information.

Example:

The user method indir() sets the desired input directory and requires the directory
name as its argument:

indir(’/home/user/data/’)

The directory name is a string argument and has to be passed embedded in double or single quotes.
Note that for consistency, in the examples throughout this manual we always use single quotes, but
these can of course be substituted for double quotes.

Omitting the argument does not change the input directory but instead results in the supply of the
current directory name:

indir()

In case an argument has to be typed more often a Python variable can be used:

a=’/home/user/data/’
indir(a)

Some methods require a list as argument. In Python a list is embedded in square brackets with a
comma as separator. Python provides a variety of functionalities to manipulate lists.

Example:

The user method signal() plots the time series of the data (flux density or counts
versus time). It allows the user to define the list of channels plotted:

signal([18,19,20])

To create a list you can use the Python function range():

mylist=range(1,163)
signal(mylist)

or:

signal(range(1,163))

Even if the list contains only one element the square brackets are mandatory:

signal([5])

User methods can also be called using keyword arguments of the form keyword = value.

22

4.3. USER METHODS FOR MAKING MAPS 23

Example:

By default, the user method signal() plots the signal versus time connecting the dat-
apoints with lines:

signal()

However, if you prefer, for example, to see the individual datapoints without lines, you
can modify the value of the style argument:

signal(style=’p’)

A description of graphics related arguments such as style is given in Section ??.

4.2.3 Output

Most user methods supply status information as screen output when being called. The amount of
information displayed can be restricted using the message handler associated with the main data
object:

data.MessHand.setMaxWeight(4)

where the arguement is an integer value between 1 and 5, with the following meaning:

• 1: errors, queries

• 2: warnings

• 3: short info

• 4: extended info

• 5: debug

4.3 User methods for making maps

Several methods are provided for constructing a map.

4.3.1 Making an Az-El map

DESCRIPTION: construct a map in (Az,El) coordinates.

USAGE: mapping (optional arguments)

OPTIONAL ARGUMENTS:

23

4.3. USER METHODS FOR MAKING MAPS 24

chanList channels to consider

flag flag values to consider

oversamp oversampling factor (beam fwhm / pixel size). Default=2.

beammap compute a beam map (default: no)

system coord. system, one of ’HO’ (Az,El *offsets*) or ’EQ’(RA, Dec absolute coord.)

default = ’HO’; optionally ’EQFAST’ to do only one rotation on small maps (faster)

sizeX limits in Az of the map

sizeY limits in El of the map

noNan remove NaN in self.Results?

style color table to use in image

smooth do we smooth with beam? (default: no)

noPlot do not plot the map? (default: no)

caption plot caption

aspect keep aspect ratio? (default: yes)

showRms compute and print rms/beam? (default: yes)

rmsKappa kappa in kappa-sigma clipping used to compute rms

4.3.2 Making a map

DESCRIPTION: construct a map in EQ or (Az,El) coordinates.

USAGE: doMap (optional arguments)

OPTIONAL ARGUMENTS:

chanList channels to consider

flag flag values to consider

oversamp oversampling factor (beam fwhm / pixel size). Default=2.

beammap compute a beam map (default: no)

system coord. system, one of ’HO’ (Az,El *offsets*) or ’EQ’ (RA, Dec absolute coord.)

default = ’HO’; optionally ’EQFAST’ to do only one rotation on small maps (faster)

sizeX limits in Az of the map

sizeY limits in El of the map

noNan remove NaN in self.Results?

style color table to use in image

smooth do we smooth with beam? (default: no)

noPlot do not plot the map? (default: no)

caption plot caption

aspect keep aspect ratio? (default: yes)

showRms compute and print rms/beam? (default: yes)

rmsKappa kappa in kappa-sigma clipping used to compute rms

24

4.3. USER METHODS FOR MAKING MAPS 25

4.3.3 Smoothing an image

DESCRIPTION: smooth the image with a 2D gaussian of given FWHM

USAGE: smooth (optional arguments)

OPTIONAL ARGUMENTS:

beamSize the FWHM of the smoothing gaussian

4.3.4 Displaying a map

DESCRIPTION: display a reconstructed map

USAGE: mapdisp (optional arguments)

OPTIONAL ARGUMENTS:

weight, coverage plot the rms or weight map instead of signal map

style the style used for the color (default idl4)

caption the caption of the plot (default ”)

limitsX the limits in X intensity

limitsY the limits in Y intensity

wedge draw a wedge ? (default : yes)

aspect keep the aspect ratio (default : yes)

overplot should we overplot this image (default : no)

doContour draw contour instead of map (default : no)

levels the levels of the contours (default : intensity progression)

labelContour label the contour (default : no)

4.3.5 Subtracting a baseline

DESCRIPTION: remove median value per channel and per subscan.

USAGE: medianBase (optional arguments)

OPTIONAL ARGUMENTS:

channel list of channels to process (default: [] = current list)

subscan subscan : compute baseline per subscan (default: yes)

4.3.6 Plotting RMS versus channel number

DESCRIPTION: plot the RMS value against channel number.

USAGE: plotRmsChan (optional arguments)

OPTIONAL ARGUMENTS:

25

4.3. USER METHODS FOR MAKING MAPS 26

subscan subscan : if 0, plot rms of the complete scan (default), if 1, plot for each subscan

and each channel

4.3.7 Flagging channels with certain rms values

DESCRIPTION: flag channels with rms below ’below’ or above ’above’.

USAGE: flagRms (optional arguments)

OPTIONAL ARGUMENTS:

chanList list of channel to flag (default: current list)

below flag channels with rms < ’below’

above flag channels with rms > ’above’

flag flag value to set

4.3.8 Updating offset and gain values from a file

DESCRIPTION: update only offsets and gains from the content of a file

USAGE: updateRCP (optional arguments)

OPTIONAL ARGUMENTS:

rcpFile complete name of file to read in

4.3.9 Flagging a position on the sky

DESCRIPTION: flag a position in the sky within a given radius

USAGE: flagPos (optional arguments)

OPTIONAL ARGUMENTS:

channel list of channel to flag (default: ’all’)

Az/El the horizontal reference position (arcsec for offsets, deg for absolute)

radius aperture to flag in unit of the reference position

flag flag to be set (default 5)

offset flag on the offsets (default yes)

4.3.10 Baseline removal

DESCRIPTION: perform polynomial baseline removal on the data.

USAGE: base (optional arguments)

OPTIONAL ARGUMENTS:

26

4.3. USER METHODS FOR MAKING MAPS 27

channel ist of channel to flag (default: all; [] : current list)

order polynomial order, >0

subscan compute baseline per subscan (default: yes)

plot plot the signal and the fitted polynomials (default: no)

subtract subtract the polynomial from the data (default: yes)

4.3.11 Noise removal

DESCRIPTION: remove median noise from the data.

USAGE: medianNoiseRemoval (optional arguments)

OPTIONAL ARGUMENTS:

chanList list of channel to flag (default: all; [] : current list)

chanRef reference channel number (default: RefChannel)

computeFF compute skynoise FF (default) or use existing FF_Median?

4.3.12 Flagging a list of channels

DESCRIPTION: assign flags to a list of channels. To unflag a channel simply flag with flag=0.

USAGE: flagC (optional arguments)

OPTIONAL ARGUMENTS:

chanList list of channels to be flagged (default: current list)

flag flag value

4.3.13 Unflagging a list of channels

DESCRIPTION: Unflag a list of channels, i.e. reset to 0.

USAGE: unflag (optional arguments)

OPTIONAL ARGUMENTS:

channel list of channels to be unflagged (default: current list)

flag unflag only this value (default 1)

4.3.14 Despiking

DESCRIPTION: Flag yet unflagged data below ’below’*rms and above ’above’*rms.

USAGE: despike (optional arguments)

OPTIONAL ARGUMENTS:

27

4.4. USER METHODS FOR POINTING 28

chanList list of channels to be flagged (default: current list)

below flag data with value < ’below’*rms

above flag data with value > ’above’*rms

4.4 User methods for pointing

4.5 User methods for focus

The recommended way to conduct Laboca focus observations is to perform a series of n*3 short,
symmetric on-offs, e.g. 3 or 6*(4*5sec). For this simply the onoff has to be reduced and then the
results can be fitted by a parabola.

solveFocus() # compute the optimal focus position

4.6 User methods for file reading

4.6.1 Reading a FITS file

Reading a FITS file into BoAis done with the read() command. You may want to define the input
directory first:

indir(’../fits/’) # set the input directory
read(’APEX-600’) # read file APEX-600.fits

The data are then stored in the default data object. It is possible to use several data objects, and to
store the content of a file to a user defined object requires the following syntax:

data2 = BoaMapping.Map() # define a second data object
of class Map

data2.read(’APEX-600’)

4.7 User methods for controlling graphics display devices

In order to display your data in various ways using the BoA plotting methods described in Section 4.8
below, you first need to open a graphics display device (e.g. Xwindows). Graphics display in BoA
is controlled by a software package called BoGLi (the BoA Graphic Library), which is described in
Chapter 5. A few basic BoGLi commands which are needed in order to carry out the BoA plotting
methods described in section 4.8 are thus described in this section.

4.7.1 Opening a plot window

Opening a graphic device is done with the open() command:

28

4.8. USER METHODS FOR DISPLAYING DATA 29

open() # open a device, default: XWindow
op() # alternatively, use the abbreviated command

The default is to open an XWindow. You can use

op(’?’)

to get a list of all recognized devices. Alternatively, if you know which device you want you can enter
it directly, for example

op(’/ps’)

You can also open a named PostScript file, here a colour PostScript file named signal.ps, with

op(’signal.ps/CPS’)

4.7.2 Clearing a plot window

Clearing a plotting window is done with the clear() command:

clear() # clear the active device

However, any plot command will first clear the active device before plotting a new graph, unless the
overplot=1 keyword is supplied.

4.7.3 Closing a plot window

Closing a graphic device is done with the close() command:

close() # open a device, default: XWindow

4.8 User methods for displaying data

4.8.1 Displaying channel maps

If you want to display channel maps you can do this with the command chanmap(). The default is
to plot channel maps for all available channels. You can also specify a list of channels to be plotted.

Example:

read(’3543’) # read in a file
op() # open an XWindow device
chanmap() # produce channel maps for all channels
chanmap(range(26)) # channel maps for the first 25 channels
chanmap([1,4,20,55]) # channel maps for a selection of channels

29

4.8. USER METHODS FOR DISPLAYING DATA 30

Figure 4.8.1: Default graphical outputs of a channel map of the source 00388+6312, including a
wedge.

4.8.2 Plotting azimuth versus LST

DESCRIPTION: Plot the time series of the azimuth, i.e. azimuth versus LST.

USAGE: azimuth (optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of plotting related arguments can be found in Section 5.5.

Example:

azimuth(style=’p’, ci=2, limitsY=[-14,-13])

Plot azimuth versus LST but show individual plotted points (rather than lines), make
plotted points red, and only plot azimuth (y axis) from -14 to -13 degrees.

4.8.3 Plotting elevation versus LST

DESCRIPTION: Plot the time series of the elevation i.e. elevation versus LST.

USAGE: elevation (optional arguments)

OPTIONAL ARGUMENTS:

30

4.8. USER METHODS FOR DISPLAYING DATA 31

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.4 Plotting elevation versus azimuth

DESCRIPTION: Plot elevation versus azimuth.

USAGE: azel (optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.5 Plotting elevation offset versus LST

DESCRIPTION: Plot elevation offset versus LST.

USAGE: eleoff (optional arguments)

OPTIONAL ARGUMENTS:

31

4.8. USER METHODS FOR DISPLAYING DATA 32

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.6 Plotting azimuth offset versus LST

DESCRIPTION: Plot azimuth offset versus LST.

USAGE: azimoff (optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.7 Plotting elevation offset versus azimuth offset

DESCRIPTION: Plot elevation offset versus azimuth offset.

USAGE: azelo (optional arguments)

OPTIONAL ARGUMENTS:

32

4.8. USER METHODS FOR DISPLAYING DATA 33

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.8 Plotting azimuth and elevation speed

DESCRIPTION: Plot azimuth and elevation speed.

USAGE: azelspeed (optional arguments)

OPTIONAL ARGUMENTS:

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.9 Plotting azimuth and elevation acceleration

DESCRIPTION: Plot azimuth and elevation acceleration.

USAGE: azelaccel (optional arguments)

OPTIONAL ARGUMENTS:

33

4.8. USER METHODS FOR DISPLAYING DATA 34

flag flag to be used (default = 0: all valid data; -1: plot all)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

aspect

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

as for azimuth(), above.

4.8.10 Selecting channels

DESCRIPTION: Select a channel or a list of channels to be plotted. The list is automatically sorted.

USAGE: channels (optional argument)

OPTIONAL ARGUMENTS:

chanList: list of channel numbers, of the form: [1,2,3]

’all’... ’al’...’a’

’?’

Example:

channels([1,2,3]) list of channels to be plotted

channels(chanList=[1,2,3]) list of channels to be plotted

channels(’all’) set current list to all possible channels

channels(’?’) get current list of channels (the default if no argument

is specified)

4.8.11 Get a list of valid channels

DESCRIPTION: Return a list of valid channels

USAGE: checkChannels (optional argument)

OPTIONAL ARGUMENTS:

inList list of channel numbers to get, or empty list to get the complete list

of unflagged channels, or ’all’ or ’al’ or ’a’ to get the complete list of channels

flag flag value to be selected (default = 0)

34

4.9. MB-FITS TO FITS FILE CONVERSION 35

4.8.12 Print the current list of channels

DESCRIPTION: Print the current list of channels

USAGE: printChannels()

4.8.13 Plotting flux density versus LST

DESCRIPTION: Plot the time series of the flux density i.e. flux density versus LST.

USAGE: signal (optional argument)

OPTIONAL ARGUMENTS:

chanList list of channels, of the form [1,2,3]

flag flag to be used

mjd if set, use mjd instead of lst

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

A more detailed description of the plotting related arguments can be found in Section 5.5.

Example:

signal(chanList=[18,19,20], mjd=1, style=’p’, ci=2)

signal([18,19,20], mjd=1, style=’p’, ci=2)

4.8.14 Plotting the FFT of the signal

4.9 MB-Fits to FITS file conversion

To convert an MB-Fits file to a FITS file in the MAMBO format you can use the command mambo().
The current version does NOT use the data contained in the data object in BoA, but reads the input
file (with default name = BoaB.currData.FileName) and converts it to the Mambo format. Therefore,
this procedure is somewhat decoupled from BoA.

4.10 Miscellaneous methods

4.10.1 Updating offsets and gains

Offsets and gains can be updated from the content of a file using the method updateRCP.

35

4.11. SCRIPTS 36

Example:

updateRCP(’jup-44830-32-improved.rcp’)

4.10.2 Display start and end times of subscans

DESCRIPTION: generate a plot showing starting and ending times of subscans

USAGE: plotSubscan()

4.10.3 Plot subscans on the Az-El pattern

DESCRIPTION: Use four colours to show subscans on the Az, El pattern

USAGE: plotSubscanOffsets()

4.10.4 Plot flux density of channels versus reference channel

DESCRIPTION: plot flux density of a list of channels vs. flux density of a reference channel

USAGE: plotCorrel (optional argument)

OPTIONAL ARGUMENTS:

chanRef reference channel number (default : is the first in chanList)

chanList list of channels, of the form [1,2,3]

flag flag to be used

skynoise plot against the skynoise of chanRef (default : no)

limitsX range of X values to be plotted (comma separated values, in square brackets)

limitsY range of Y values to be plotted (comma separated values, in square brackets)

style linestyle to be used (’p’ or ’l’, for points and solid line respectively)

ci colour index to be used (integer values)

overplot

4.11 Scripts

As BoA provides the full functionality of Python this allows the use of scripts. Scripts can be run with
the execfile() function where the name of the file has to be given as string argument. The suffix
of the file is arbitrary.

Example:

If you want to have a look at the time series of channels 10 to 30 succesively, create the
following script with your preferred editor. Note that in Python the contents of the for
loop (like if blocks, method definitions, etc.) have to be indented.

36

4.11. SCRIPTS 37

testBoa.py
indir(’../Fits/’) # set the input directory
read(’test’) # read file test.fits
op() # open graphic display
for i in range(10,31): # start a for loop, the indentation in

the following lines is mandatory
sig([i]) # plot time series
raw_input() # wait for <Return>

To run the script type:

execfile(’testBoa.py’)

4.11.1 Example scripts

In order to demonstrate some of the basic functionalities of BoA three demonstration scripts are
provided: ExampleMap.py, ExamplePointing.py and ExampleFocus.py. These can be found in the
directory /home/user/boa/examples/ and are described in detail in Chapter 3. Run the scripts by
typing:

execfile(’/home/user/boa/examples/ExampleMap.py’)

37

4.12. COMMANDS IN ALPHABETICAL ORDER 38

4.12 Commands in alphabetical order

arrayParameters determine the array parameters from the data

basePoly fit and subtract baseline from individual scans or subscans

basePolySubscan subtract baseline subscan by subscan

beamMap build a beam map in (Az,El) coordinates

blankAmplitude blank the amplitude below and/or after a certain frequency

checkChanList Return a list of valid channels

checkFits check for MBFits name structure

clear clear the active plot window

closeDev close one device

computeBeamSize Compute the beam size in arcsec

computeChanSepValid Compute separation between VALID (i.e. not flagged -1)
pixels (in arcsec)

computeCorMatrix compute correlation matrix

computeOnOff determine ON-OFF pairs from content of WobblerSta, and
fill OnOffPairs attribute with pairs of integration numbers.
The result is a 2 x Nb_Integ. array of integers.

computeSN compute correlated noise, run after computeCorMatrix,
computeWeight, correlate

computeWeight compute weight matrix of the used channels, run after com-
puteCorMatrix

correlate compute correlation relative to a reference channel

despike Flag yet unflagged data below ’below’*rms and above
’above’*rms

doFFT perform the FFT

fastChanMap plot channel maps (quick method)

fastmap reconstruct a map in (Az,El) coordinates combining
bolometers

findInDir ???

flag flag data at more than n*rms

flagChannels flag a list of channels

flagLST flag data by LST interval

flagLon flag data by Az offset interval

flagPosition flag a position in the sky within a given radius

flagRms Flag channels with rms below or above respective given
values

flagSubscan flag certain subscans

38

4.12. COMMANDS IN ALPHABETICAL ORDER 39

getChanData get data for one channel

getChanListData get data for a list of channels

getPixel allow user to get pixel values using mouse

invFFT perform the inverse FFT

iterMap reconstruct a map in (Az,El) coordinates combining
bolometers and using varying scale to zoom on signal

listInDir list the input directory

mambo convert MB-Fits file to MAMBO format

medianBaseline baseline: Remove median value per channel and per sub-
scan

medianFilter median filtering: remove median values computed over
sliding window

open open a graphic device

plotArray plot the receiver parameters

plotAzEl plot elevation versus azimuth

plotAzElAcceleration plot azimuth and elevation acceleration

plotAzElOffset plot elevation offset versus azimuth offset

plotAzElSpeed plot azimuth and elevation speed

plotAzimuth plot azimuth versus LST

plotAzimuthOffset plot azimuth offset versus LST

plotCorMatrix plot the correlation matrix

plotCorrel plot signal vs. reference channel

plotElevation plot elevation versus LST

plotElevationOffset plot elevation offset versus LST

plotFFT plot FFT of signal

plotGain plot the gain of the Array

plotMean plot mean flux values vs. subscan numbers

plotMeanChan plot mean value for each subscan vs. chan. number

plotRms plot rms flux values vs. subscan numbers

plotRmsChan plot rms value for each subscan vs. chan. number

plotSubscan generate a plot showing starting and ending times of sub-
scans

plotSubscanOffsets Use four colours to show subscans on the Az, El pattern

printCurrChanList print the current channel list

read read in a file

reduce Process a Pointing scan - this method is called by the apex-
Calibrator

39

4.12. COMMANDS IN ALPHABETICAL ORDER 40

resiz resize the plot, after resizing window with mouse

resetCurrentList reset the CurrentList to the complete list

rotateArray rotate array offsets according to elevation

selectDev select an open device

selectInDir make a selection in the current list

setCurrChanList select list of channels

setInDir set the input directory

setInFile set the input file name

setMess display a message

setOutDir set the output directory

setOutFile set the output file name

setProjectID set the project ID

showMap show the reconstructed map in (Az,El)

showPointing ???

signal plot the time series of the data (flux density versus LST)

slowMap reconstruct a map in (Az,El) coordinates combining
bolometers

smoothBy smooth the image with a 2D gaussian of gived FWHM

smoothWith smooth the image with the given kernel

snf compute and subtract skynoise

solveFocus compute the optimal focus position

solvePointing compute the pointing offset

solvePointingOnMap compute the offset on the data.Map object

statistics prints the statistics

unflag unflag data

unflagChannels unflag a list of channels

updateArrayParameters Update the Parameters Offsets with the computed values

writeMBfits write the data (and parameters) contained in the current
data out to a FITS file in MB-Fits format

40

4.13. COMMANDS IN FUNCTIONAL ORDER 41

4.13 Commands in functional order

4.13.1 Plotting

plotArray plot the receiver parameters

plotAzEl plot elevation versus azimuth

plotAzElAcceleration plot azimuth and elevation acceleration

plotAzElOffset plot elevation offset versus azimuth offset

plotAzElSpeed plot azimuth and elevation speed

plotAzimuth plot azimuth versus LST

plotAzimuthOffset plot azimuth offset versus LST

plotCorMatrix plot the correlation matrix

plotCorrel plot signal vs. reference channel

plotElevation plot elevation versus LST

plotElevationOffset plot elevation offset versus LST

plotFFT plot FFT of signal

plotGain plot the gain of the Array

plotMean plot mean flux values vs. subscan numbers

plotMeanChan plot mean value for each subscan vs. chan. number

plotRms plot rms flux values vs. subscan numbers

plotRmsChan plot rms value for each subscan vs. chan. number

plotSubscan generate a plot showing starting and ending times of sub-
scans

plotSubscanOffsets Use four colours to show subscans on the Az, El pattern

signal plot the time series of the data (flux density versus LST)

slowMap reconstruct a map in (Az,El) coordinates combining
bolometers

4.13.2 Device handling

clear clear the active plot window

closeDev close one device

open open a graphic device

resiz resize the plot, after resizing window with mouse

selectDev select an open device

41

4.13. COMMANDS IN FUNCTIONAL ORDER 42

4.13.3 Pointing and focus

reduce Process a Pointing scan - this method is called by the apex-
Calibrator

showMap show the reconstructed map in (Az,El)

showPointing ???

solveFocus compute the optimal focus position

solvePointing compute the pointing offset

solvePointingOnMap compute the offset on the data.Map object

4.13.4 Flagging and despiking data

blankAmplitude blank the amplitude below and/or after a certain frequency

despike Flag yet unflagged data below ’below’*rms and above
’above’*rms

flag flag data at more than n*rms

flagChannels flag a list of channels

flagLST flag data by LST interval

flagLon flag data by Az offset interval

flagPosition flag a position in the sky within a given radius

flagRms Flag channels with rms below or above respective given
values

flagSubscan flag certain subscans

unflag unflag data

unflagChannels unflag a list of channels

4.13.5 Map making

beamMap build a beam map in (Az,El) coordinates

fastChanMap plot channel maps (quick method)

fastmap reconstruct a map in (Az,El) coordinates combining
bolometers

iterMap reconstruct a map in (Az,El) coordinates combining
bolometers and using varying scale to zoom on signal

42

4.13. COMMANDS IN FUNCTIONAL ORDER 43

4.13.6 Baseline subtraction, sky removal and statistics

basePoly fit and subtract baseline from individual scans or subscans

basePolySubscan subtract baseline subscan by subscan

computeCorMatrix compute correlation matrix

computeSN compute correlated noise, run after computeCorMatrix,
computeWeight, correlate

computeWeight compute weight matrix of the used channels, run after com-
puteCorMatrix

correlate compute correlation relative to a reference channel

doFFT perform the FFT

invFFT perform the inverse FFT

medianBaseline baseline: Remove median value per channel and per sub-
scan

medianFilter median filtering: remove median values computed over
sliding window

smoothBy smooth the image with a 2D gaussian of gived FWHM

smoothWith smooth the image with the given kernel

snf compute and subtract skynoise

statistics prints the statistics

4.13.7 File handling

checkFits check for MBFits name structure

mambo convert MB-Fits file to MAMBO format

read read in a file

writeMBfits write the data (and parameters) contained in the current
data out to a FITS file in MB-Fits format

4.13.8 Data handling

arrayParameters determine the array parameters from the data

checkChanList Return a list of valid channels

computeOnOff determine ON-OFF pairs from content of WobblerSta, and
fill OnOffPairs attribute with pairs of integration numbers.
The result is a 2 x Nb_Integ. array of integers.

getChanData get data for one channel

getChanListData get data for a list of channels

getPixel allow user to get pixel values using mouse

43

4.14. ABBREVIATIONS 44

4.13.9 Selecting files and directories

findInDir ???

listInDir list the input directory

resetCurrentList reset the CurrentList to the complete list

selectInDir make a selection in the current list

setCurrChanList select list of channels

setInDir set the input directory

setInFile set the input file name

setOutDir set the output directory

setOutFile set the output file name

setProjectID set the project ID

4.13.10 Misc.

computeBeamSize Compute the beam size in arcsec

computeChanSepValid Compute separation between VALID (i.e. not flagged -1)
pixels (in arcsec)

rotateArray rotate array offsets according to elevation

setMess display a message

updateArrayParameters Update the Parameters Offsets with the computed values

4.14 Abbreviations

As we have noted already, user methods are abbreviations of the full methods. For example, the
method DeviceHandler.openDev() can be called by the user method open(). For further
convenience, most user methods can also be called by even shorter abbreviations of the user methods
(in this example op() is all that is needed). A list of user methods and their abbreviations is given in
Table 4.1.

44

4.14. ABBREVIATIONS 45

Command Abbreviations
basePoly baseline ... base
basePolySubscan basesub
clear clea ... cle ... cl
closeDev close ... clos ... clo
computeCorMatrix cormatrix ... cmatrix
correlate cor
dumpData dumpDat ... dumpD ... dump
fastChanMap2 chanmap ... ChanMap ... chanMap
fastmap2 mapping ... fastMapping ...fastMap
findInDir find ... fd
flagChannels flagCh ... flagC ... fCh
listInDir indirls ... ils
setMess mess
open ope ... op
plotAzEl azel
plotAzElOffset azeloff ... azelo
plotAzimuth azimuth ... azim ... az
plotAzimuthOffset azimuthOffset ... azimoff ... azo
plotCorrel plotcorrel ... plotcor ... plotCor
plotElevation elevation ... elev ... el
plotElevationOffset elevationOffset ... eleoff ... elo
plotMean plotmean ... plotMean
plotMeanChan plotmeanchan ... plotMeanChan
plotRms plotrms ... plotRms
plotRmsChan plotrmschan ... plotRmsChan
readRCPfile readRCP ... rcp
resiz resi
restoreData restoreD ... restore ... restor
saveMambo mambo
selectDev device ... devic ... devi ... dev
selectInDir select ... slt
setCurrChanList channels ... channel ... chan
setInDir indir ... indi ... ind
setInFile infile ... infil ... infi ... inf
setOutDir outdir ... outdi ... outd
setOutFile outfile ... outfil ... outfi ... outf
setProjectID setproj ...proj
signal signa ... sign ... sig
statistics stat
unflagChannels unflagCh ... unflagC ...ufCh

Table 4.1: List of user methods with abbreviations. Don’t forget to add the round brackets () at the
end of the commands.

45

5. BoGLi: THE BoAGRAPHIC LIBRARY

5.1 Introduction

The BoA Graphic Library (BoGLi) is an object-oriented software package for the graphical display of
data. It is written in Python and uses pgplot, the python binding to pgplot. The main parts (classes) of
the software are self-consistent and may independently be used from any python programme. Never-
theless, BoGLi comes with features which especially customise its use for the display of astronomical
data from multi-channel receivers. Its main goal is to provide a graphic tool tailored for the use with
BoA for the display of data from LaBoCa, Simba and Mambo.

5.2 Command handling

BoGLi has its own command handler. Nevertheless, anytime the BoA command handler encounters
a graphic command this is automatically passed to the BoGLi command handler. Therefore, the user
does not have to care about the separation between BoA and BoGLi commands. Table 5.1 gives an
overview of some of the available commands.

BoGLi provides a variety of attributes that may be changed by the user. The attribute name is then
used as command followed by the desired value as argument (see Sect. ?? for details.)

Table 5.1: List of useful BoGLi commands.
DeviceHandler.openDev open a device

DeviceHandler.closeDev close a device

Plot.clear clear the active plot window

DeviceHandler.selectDev select a device

DeviceHandler.resizeDev resize the plotting area, after plot window resized using mouse

Plot.plot make a single plot

MultiPlot.plot plot multiple plots

Plot.draw draw on an image

MultiPlot.draw draw on plots of multiple channels

46

http://www.astro.caltech.edu/~tjp/pgplot/

5.3. DEVICE HANDLING 47

5.3 Device handling

BoGLi is based on pgplot and as a consequence the number and type of available de-
vices depends on the actual configuration. A list of supported devices is given at
http://www.astro.caltech.edu/ tjp/pgplot/devices.html. During installation the device drivers have to
be selected by editing the file drivers.list. As many device drivers are available on selected operating
systems only, you should ensure that drivers you do not want are commented out (place ! in column
1) to avoid installation failures. A version of drivers.list used for a Linux PC can be found in Sect ??.

The command handler of BoGLi provides a set of commands to manage output devices. A detailed
description of these commands is given below.

5.3.1 Opening a plot window

DESCRIPTION: Open a graphics device for pgplot output and make it the current device. The default,
when no argument is provided, is to open an XWindow.

USAGE: DeviceHandler.openDev(optional argument)

The relevant abbreviations can also be used (see Table 4.1).

OPTIONAL ARGUMENT: pgplot device type

If the device is opened successfully, it becomes the selected device to which graphics output is directed
until another device is selected (see 5.3.4) or the device is closed (see 5.3.2). If no device argument is
specified PGPLOT will open the default graphics device (an XWINDOW). Alternatively, the graphics
device may be selected using any of the following as arguments:

(1) A complete device specification of the form ’device/type’ or ’file/type’, where /type is one of
the allowed PGPLOT device types (installation-dependent, e.g. /xwindow) and ’device’ or ’file’
is the name of a graphics device or disk file appropriate for this type. The ’device’ or ’file’ may
contain ’/’ characters; the final ’/’ delimits the ’type’. If necessary to avoid ambiguity, the
’device’ part of the string may be enclosed in double quotation marks.

Example: ’plot.ps/ps’, ’dir/plot.ps/ps’, ’"dir/plot.ps"/ps’,
’user:[tjp.plots]plot.ps/PS’

(2) A device specification of the form ’/type’, where /type is one of the allowed PGPLOT device
types, e.g. /xwindow. PGPLOT supplies a default file or device name appropriate for this device
type.

Example: ’/ps’ (PGPLOT interprets this as ’pgplot.ps/ps’)

(3) A device specification with ’/type’ omitted; in this case the type is taken from the environment
variable PGPLOT_TYPE, if defined (e.g., setenv PGPLOT_TYPE PS). Because of possible
confusion with ’/’ in file-names, omitting the device type in this way is not recommended.

Example: ’plot.ps’ (if PGPLOT_TYPE is defined as ’ps’, PGPLOT interprets this as
’plot.ps/ps’)

(4) A blank string (’ ’); in this case, PGOPEN will use the value of environment variable PG-
PLOT_DEV as the device specification, or ’/NULL’ if the environment variable is undefined.

47

http://www.astro.caltech.edu/~tjp/pgplot/
http://www.astro.caltech.edu/~tjp/pgplot/devices.html

5.3. DEVICE HANDLING 48

Example: ’ ’ (if PGPLOT_DEV is defined)

(5) A single question mark, with optional trailing spaces, i.e. (’?’). In this case, PGPLOT will
prompt the user to supply the device specification, with a prompt string of the form ’Graphics
device/type (? to see list, default XXX):’ where ’XXX’ is the default (value of environment
variable PGPLOT_DEV).

Example: ’? ’

(6) A non-blank string in which the first character is a question mark (e.g. ’?Device: ’); in this case,
PGPLOT will prompt the user to supply the device specification, using the supplied string as
the prompt (without the leading question mark but including any trailing spaces).

Example: ’?Device specification for PGPLOT: ’

In cases (5) and (6), the device specification is read from the standard input. The user should respond
to the prompt with a device specification of the form (1), (2), or (3). If the user types a question-mark
in response to the prompt, a list of available device types is displayed and the prompt is re-issued. If
the user supplies an invalid device specification, the prompt is re-issued. If the user responds with an
end-of-file character, e.g., ctrl-D in UNIX, program execution is aborted; this avoids the possibility of
an infinite prompting loop. A programmer should avoid use of PGPLOT-prompting if this behavior is
not desirable.

The device type is case-insensitive (e.g., ’/ps’ and ’/PS’ are equivalent). The device or file name may
be case-sensitive in some operating systems.

5.3.2 Closing a plot window

DESCRIPTION: Close a plotting device. The default, where no argument is supplied, is to close the
current device.

USAGE: DeviceHandler.closeDev(optional argument)

OPTIONAL ARGUMENT:

device number (integer)

’all’

’current’...’curre’...’cur’

Example:

DeviceHandler.closeDev(2) Close the device with identifier 2

DeviceHandler.closeDev(’all’) close all devices

DeviceHandler.closeDev(’current’) close current device (the default if no argument specified)

5.3.3 Clearing a plot window

DESCRIPTION: Clear the output of the current device. To clear the output of a different device change
to that device first (see 5.3.4).

48

5.4. PLOTTING GRAPHICS 49

USAGE: Plot.clear()

5.3.4 Selecting a device

DESCRIPTION: Select an open device for graphical output. The selected device has to be previously
opened with open (see 5.3.1).

USAGE: DeviceHandler.selectDev(argument)

ARGUMENT: device number (integer)

Example:

DeviceHandler.selectDev(2) Make device number 2 the current device for graphical output

5.3.5 Resizing a device

DESCRIPTION: Resize the plotting area after resizing of the graphics display window using the mouse.
This is applicable to some interactive devices (e.g. /xwindow).

USAGE: DeviceHandler.resizeDev()

5.4 Plotting graphics

This section lists some of the graphics plotting capabilities of BoGLi.

5.4.1 Plotting single plots

DESCRIPTION: Make a single plot of x versus (optional) y.

USAGE: Plot.plot(dataX, [dataY, limitsX, limitsY, labelX, labelY, caption, style, ci, width,
overplot, aspect, logX, logY, nodata])

ARGUMENTS:

dataX values to plot along X

dataY values to plot along Y (optional - default: plot dataX vs. running number)

OPTIONAL ARGUMENTS:

49

5.4. PLOTTING GRAPHICS 50

Figure 5.4.1: Example 1 of graphics produced using Plot.plot

Figure 5.4.2: Example 2 of graphics produced using Plot.plot

50

5.4. PLOTTING GRAPHICS 51

Figure 5.4.3: Example 3 of graphics produced using Plot.plot

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

labelX x label (default ’x’)

labelY y label (default ’y’)

caption the caption of the plot (default ’ ’)

style the style used for the plot (’l’: line, ’p’: point (default), ’b’: histogram)

ci color index (default 1)

width linewidth (defaut 0 = use previous)

aspect keep the aspect ratio in ’physical’ unit

overplot set overplot=1 to overplot (default no)

logX set logX=1 to use a log scale (default no)

logY set logY=1 to use a log scale (default no)

These are also described in Section ??. Note dataY is also optional – if no dataY is supplied the default
is to plot dataX versus running number.

Example:

x = Numeric.array(range(100),Numeric.Float)/10

Plot.plot(x,Numeric.sqrt(x),limitsX=[1,5])

Note that Y limits are then computed according to this X range.

The graphic output produced in this case is shown in Figure 5.4.1.

Example:

51

5.4. PLOTTING GRAPHICS 52

Figure 5.4.4: Example of graphics produced using MultiPlot.plot

Plot.plot(x,x*x,labelX=’blah’,labelY=’blah2’,caption=’caption’)

Note that plot clear the screen first, you need to use the new ’overplot’ keyword (see
below).

The graphic output produced in this case is shown in Figure 5.4.2.

Example:

Plot.plot(x,x*x*x,overplot=1,ci=2,style=’l’)

The graphic output produced in this case is shown in Figure 5.4.3.

5.4.2 Plotting multiple channels

DESCRIPTION: Make a plot of x versus (optional) y for several channelssimultaneously.

USAGE: MultiPlot.plot(chanList, dataX, dataY, [limitsX, limitsY,labelX,labelY,
caption, style, ci, overplot, logX, logY, nan])

ARGUMENTS:

chanList list of channels, of the form [1,2,3]

dataX values to plot along X

dataY values to plot along Y

OPTIONAL ARGUMENTS:

52

5.4. PLOTTING GRAPHICS 53

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

labelX x label (default ’x’)

labelY y label (default ’y’)

caption the caption of the plot (default ’ ’)

style the style used for the plot (’l’: line, ’p’: point (default), ’b’: histogram)

ci color index (default 1)

overplot set overplot=1 to overplot (default no)

logX set logX=1 to use a log scale (default no)

logY set logY=1 to use a log scale (default no)

These are also described in Section ??.

Example:

n_point = 365
chanlist=range(n_point)

x2 = RandomArray.random([n_point,n_point])
y2 = RandomArray.random([n_point,n_point])

MultiPlot.plot(chanlist,x2,y2+x2,style=’p’)

The graphic output produced in this case is shown in Figure 5.4.4.

5.4.3 Drawing on an image

DESCRIPTION: Draw on an image

USAGE: Plot.draw(map_array, [sizeX, sizeY, WCS, limitsX, limitsY, limitsZ, nan, labelX,
labelY, caption, style, contrast, brightness, wedge, overplot, aspect, doContour, levels, labelContour
])

ARGUMENTS:

map_array map to display

OPTIONAL ARGUMENTS:

53

5.4. PLOTTING GRAPHICS 54

Figure 5.4.5: Example 1 of graphics produced using Plot.draw

Figure 5.4.6: Example 2 of graphics produced using Plot.draw: drawing contours

54

5.4. PLOTTING GRAPHICS 55

sizeX the ’physical’ size of the array (default pixel numbers), defined by the
center of the two extreme pixels

sizeY the ’physical’ size of the array (default pixel numbers), defined by the
center of the two extreme pixels

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

nan set =1 if NaN are present in the array

labelX x label (default ’x’)

labelY y label (default ’y’)

caption the caption of the plot (default ’ ’)

style the color used for the plot (default ’g2r’, see Plot.Plot.setImaCol())

wedge set wedge=1 to draw a wedge (default no)

aspect keep the aspect ratio in ’physical’ unit

overplot set overplot=1 to overplot (default no)

doContour set =1 to draw contour instead of map (default no)

levels the levels for the contours (default nContour, within plotLimitsZ)

labelContour set =1 to label the contours (default no)

These arguments are also described in Section ??.

Example:

n_point = 365

mapping = Numeric.absolute(RandomArray.standard_normal([n_point,n_point/2]))

Plot.draw(mapping,style=’b2r’,wedge=1)

You can also define ’physical’ unit for your plot and still use
limitsX/Y and aspect:

Plot.draw(mapping,sizeX=[-1,1],sizeY=[-2,2],limitsY=[-1,1],aspect=1, wedge=1)

The graphic output produced in this case is shown in Figure 5.4.5.

Example:

You can also use Plot.draw() to plot contours.

def dist(x,y):
return (x-125)**2+(y-125)**2

55

5.4. PLOTTING GRAPHICS 56

Figure 5.4.7: Example of graphics produced using MultiPlot.draw

image = Numeric.sqrt(Numeric.fromfunction(dist,(200,200)))-50

Plot.draw(image,wedge=1,aspect=1,style=’rainbow’) # display an image
Plot.draw(image,doContour=1,overplot=1) # overlay some contours
Plot.contour[’color’] = 2 # change the colour and
Plot.contour[’linewidth’] = 10 # linewidth attributes

Plot.draw(image,doContour=1,overplot=1,levels=[-10,10,20,30]) # plot some
more contours with the new attributes

The graphic output produced in this case is shown in Figure 5.4.6.

5.4.4 Drawing on plots of multiple channels

DESCRIPTION: Draw on a multi-channel image

USAGE: MultiPlot.plot.draw(chanList,map_arrays, [sizeX, sizeY, WCS, limitsX,
limitsY, limitsZ, nan, labelX, labelY, caption, style, contrast, brightness, wedge, overplot])

ARGUMENTS:

chanList list of channels

map_arrays lits of map to display

OPTIONAL ARGUMENTS:

56

5.4. PLOTTING GRAPHICS 57

sizeX the ’physical’ size of the array (default pixel numbers)

sizeY the ’physical’ size of the array (default pixel numbers)

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

labelX x label (default ’x’)

labelY y label (default ’y’)

caption the caption of the plot (default ’ ’)

style the color used for the plot (default ’g2r’, see Plot.Plot.setImaCol())

wedge set wedge=1 to draw a wedge (default no)

overplot set overplot=1 to overplot (default no)

These are also described in Section ??.

Example:

mapping_array = []
n_map = 365
for i in range(n_map):

mapping_array.append(Numeric.absolute(RandomArray.standard_normal([120,120])))

MultiPlot.draw(range(n_map),mapping_array,wedge=1)

The graphic output produced in this case is shown in Figure 5.4.7.

57

5.5. KEYWORDS 58

5.5 Keywords

BoGLi provides a variety of parameters which allow the graphical output to be customised, as regards
primitives such as colours, linestyles, character sizes, as well as text output and general appearance.

58

5.5. KEYWORDS 59

ci colour index

The colour index is an integer in the range 0 to a device-dependent maximum.
The default colour index is 1, usually white on a black background for monitor
displays or black on a white background for printed hardcopies. Colour index
0 corresponds to the background colour. If the requested color index is not
available on the selected device, colour index 1 will be used.

ls line style

The line style is an integer in the range 1 to 5 with the following codes:

1: full line

2: dashed

3: dot-dash-dot-dash

4: dotted

5: dash-dot-dot-dot

The line style does not affect graph markers, text, or area fill.

lw line width

The line width is specified in units of 1/200 (0.005) inch (about 0.13 mm)
and must be an integer in the range 1-201. This parameter affects lines, graph
markers and text.

limitsX limits to use in X for the plot

limitsY limits to use in Y for the plot

labelX x label

(default ’x’)

labelY y label (default ’y’)

caption caption label

(default ’ ’)

style linestyle

(’l’: line, ’p’: point (default), ’b’: histogram)

width linewidth

(defaut 0 = use previous)

59

5.5. KEYWORDS 60

aspect aspect ratio

keep the aspect ratio in ’physical’ unit

overplot allow/prohibit overplotting

set overplot=1 to overplot (default no)

logX logarithmic scale

set logX=1 to use a log scale (default no)

logY logarithmic scale

set logY=1 to use a log scale (default no)

sizeX set the ’physical’ size of the array

the ’physical’ size of the array (default pixel numbers), defined by the
center of the two extreme pixels

sizeY set the ’physical’ size of the array

the ’physical’ size of the array (default pixel numbers), defined by the
center of the two extreme pixels

nan set =1 if NaN are present in the array

wedge set wedge=1 to draw a wedge (default no)

doContour draw contours

set =1 to draw contour instead of map (default no)

levels set the levels for the contours

the levels for the contours (default nContour, within plotLimitsZ)

labelContour label the contours

set =1 to label the contours (default no)

60

Part II

Reference Manual

61

6. DATA ORGANISATION

6.1 Data input: the MB-FITS format

A complete description of the Multi-Beam FITS Raw Data Format is given in the reference document
APEX-MPI-IFD-0002. In this section, we only give a brief description of this file format.

6.1.1 The hierarchy for a full scan

For a given observing sequence, corresponding to one scan, a set of tables are generated and stored in
a hierarchical way in the MB-FITS format. Three tables are created on top of this hierarchy, where
informations related to the full scan are gathered:

• Primary header: here, some general informations are stored, such as telescope name, project
ID, date of observation start, versions of MB-FITS format and FitsWriter software

• SCAN-MBFITS: the header of this table contains a description of the scan pattern (type, ge-
ometry, line length in case of a raster map...), the source name and coordinates, together with
a description of the referential used, and some generic informations about the telescope (coor-
dinates, pointing coefficients). In addition, a binary table lists the names of frontend-backend
(hereafter FEBE) combinations in use for this observation.

• FEBEPAR-MBFITS: one such table is created for each FEBE in use (in general, only one FEBE
is active for bolometer observing). It contains the FEBE name and the number of available
channels for this FEBE in its header. The associated binary table gives all relevant information
about the instrument: relative gains, positions, gain/attenuation factors, polarisation angles...

6.1.2 Tables for each subscan

For each subscan within a scan, three tables are generated:

• MONITOR-MBFITS: this table gathers all the monitoring information sent by the control sys-
tem during the observation. Each datapoint has an associated timestamp in MJD. In particular,
this monitor stream contains commanded and actual telescope positions sampled every 48 ms.
It also contains data related to the weather conditions, the subreflector angle and position, and
the LST values.

• DATAPAR-MBFITS: this table also contains the telescope positions, subreflector angles and
positions, and LST values, but interpolated to the timestamps corresponding to the data stream.

62

6.2. BOADATA OBJECTS 63

It also contains a PHASE column, which can for example contains a succession of “ON” and
“OFF” for a wobbler-switching observation.

• ARRAYDATA-MBFITS: here the raw data are stored. While some basic informations are stored
in the header (e.g. central frequency of the observation), the binary table only contains two
columns: the timestamps (in MJD), and a vector with length equal to the number of channels in
use containing the raw data for each integration.

Note: in case several FEBE are in use at the same time, then a DATAPAR table and an ARRAYDATA
table are generated for each subscan and for each FEBE.

6.2 BoAData objects

The manipulation of data within BoA is done with data objects of one class that inherits from the
DataEntity class (Sect. 4.1.2; see also Section ??). Such objects contain the current version of the
data, as well as associated parameters related to the scan and to the bolometer array. On top of this,
the DataAna and Map classes define additional attributes, as described in the next subsections.

6.2.1 DataEntity

A DataEntity object has a number of attributes, listed in the following tables. Two of them are objects
of classes BolometerArray and ScanParameter.

BolometerArray

The BolometerArray object defines the attributes listed in Table 6.1. They are read in from the file, or
computed when reading, except for CurrChanList (contains the current list of channels on which any
processing or plotting function is applied) and Flags (can be altered by the user).

Telescope

Attributes of a Telescope object are shown in Table 6.2.

ScanParam

Attributes of the ScanParam object (class ScanParameter) are listed in Table 6.3.

Data arrays

In addition to the scan parameters and bolometer array related informations, a DataEntity object con-
tains some general informations about the observation, and 2D arrays of data and related numbers,
with sizes number of pixels in use × number of integrations. These are described in Table 6.4.

63

6.2. BOADATA OBJECTS 64

Table 6.1: Attributes of a BolometerArray object
Name Type Description

Telescope object see Table 6.2

FeBe string Frontent-Backend name

EffectiveFrequency float Observing frequency, in Hz

BeamSize int Beam size, in arcsec

NChannels int Total number of pixels in the instrument

Gain float array 1D array with relative gains (flat field)

Offsets float array relative (X,Y) offsets, in arcsec

Channel_Sep float array matrix of channel to channel separations, in arcsec

TransmitionCurve float array

Flags int array Flag value for each channel (0 = unflagged)

RefChannel int Reference channel number

NUsedChannels int Number of channels in use for this observation

UsedChannels int array List of channels in use for this observation

CurrChanList int array Current list of channel numbers

Table 6.2: Attributes of a Telescope object
Name Type Description

Name str Telescope name, e.g. APEX-12m

Diameter float Antenna diameter, in m

Latitude float Latitude, in deg

Longitude float Longitude, in deg

Elevation float Elevation, in m

Note: for observations performed with wobbler switching, pairs of ON–OFF integrations are ex-
tracted from the Wobbler_Sta attribute, and the phase differences are computed. By default, after
reading, only the differentiated signals are stored in the Data attribute. The user can specify the phase
number in the read command, in order to get only the ’ON’ or the ’OFF’ data.

6.2.2 DataAna

On top of the DataEntity, the DataAna layer defines additional attributes, related to statistics and
flagging of the data. They are listed in Table 6.5.

64

6.2. BOADATA OBJECTS 65

Table 6.3: Attributes of the ScanParam object
Name Type Description

ScanNum int Scan number

ScanType string Scan type, e.g. ’FOCUS−Z

ScanMode string Scan mode, e.g. ’RASTER’

ScanDir string Scanning direction

Line_Len float Line length for a raster, in arcsec

Line_Ysp float Y-step between lines in a raster, in arcsec

Az_Vel float Scanning speed in Az, in arcsec/s

Object string Target name

Basis tuple Pair of strings describing basis frame -

e.g. (’RA−−−SFL’, ’DEC−−SFL’)

Coord tuple Target coordinates in basis frame

Date_Obs string Date of observation

Equinox float Equinox

Nula, Nule floats X, Y pointing settings at scan start

Colstart float Focus-Z setting at scan start

DeltaCA, DeltaIE floats Accumulated pointing corrections CA and IE

NObs int Number of subscans

SubscanNum int list Subscans numbers

SubscanIndex int array Integration numbers at subscans starts and ends

SubscanEpo float array Epochs of subscans starts, in year

SubscanTime float array LST times of subscans starts, in s

SubscanType string list Types of subscans - e.g. ’ON’, or ’REF’

WobUsed int Boolean: is a wobbler used?

WobCycle float Wobbler period, in s

WobblerPos float array Wobbler positions, in arcsec

WobThrow float Wobbler throw, in arcsec

WobblerSta string list Wobbler status

Nodding_Sta int array Nodding status

WobMode string Wobbler mode, e.g. ’SQUARE’

AddLonWT int Wobbler throw to be added in Az, in arcsec

AddLatWT int Wobbler throw to be added in El, in arcsec

OnOffPairs int list List of pairs of integration numbers (if wobbler)

Nint int Number of integrations

Baslon, Baslat float arrays Absolute coordinates in basis frame, in deg

Track_Az, Track_El float arrays Tracking errors in Az and El, in arcsec

Lon, Lat float arrays Offsets w.r.t. the source in Az and El, in deg

FocX, FocY, FocZ float arrays Subreflector positions in X, Y, Z, in mm

PhiX, PhiY float arrays Subreflector rotation angles in X and Y, in deg

Az, El float arrays Absolute coordinates in Az, El, in deg

Lonpole, Latpole float array Coordinates in user frame of basis pole

Rot float array Rotation angle between user and basis frames, in deg

MJD float array Timestamps in MJD, in days

UT float array Timestamps in UTC, in s

LST float array Timestamps in LST, in s

Flags int array Flagging in time domain (0 = unflagged)

65

6.2. BOADATA OBJECTS 66

Table 6.4: Other attributes of a DataEntity object
Name Type Description

FileName string Input file name

RefGain float Frontend gain/attenuation factor

JyPerCount float Counts to Jy conversion factor

Data float array Current version of the data

DataBackup float array Previous version of the data

DataWeights float array Relative weights of the datapoints

DataFlags array Flagging of individual datapoints (0 = unflagged)

CorMatrix float array Channel to channel correlation matrix

FFCF_Gain float array 1D array of relative gains (flat field) derived from skynoise

FFCF_CN float array Channel to channel correlated skynoise

SkyNoise float array Skynoise present in the signal

Table 6.5: Other attributes of a DataAna object
Name Type Description

ChanMean float array Mean values of signal per channel

ChanRms float array R.M.S of signal per channel

ChanMed float array Median values of signal per channel

ChanMean_s float array Mean values of signal per channel and per subscan

ChanRms_s float array R.M.S. of signal per channel and per subscan

ChanMed_s float array Median values of signal per channel and per subscan

flagValue int Currrent default flag value when calling a flagging routine

flagValueList int list Allowed values for flagging

66

6.3. DATA OUTPUT 67

6.2.3 Map

Finally, any kind of observation is stored in BoAin a Map object, that defines many methods for data
reduction (see the Appendix for reference). It also contains an attribute called ’Map’, of class Image,
where the results of a map-making routine are stored.

6.2.4 Storing a data object

At any time during a BoAsession, the user can dump the content of the current data object to a file. It
can later be loaded again into BoA, in order to continue with the data reduction. This is done with:

boa> dump()
boa< I: current data successfully written to BoaData.sav

or:

boa> dump(’myMap.data’)
boa< I: current data successfully written to myMap.data

to give another filename that the default BoaData.sav. Then to reload the data object, one has to do:

boa> dd = newRestoreData()

Note: it is not possible in its present state to apply this restore method to the default data object.
Therefore, after reloading a data object to a new variable (dd in the above example), one has to use
the extended syntax (Chapter ...) instead of the abbreviations defined in BoaShortcuts.py.

6.3 Data output

6.3.1 Converting the raw data

BoAprovides a procedure to convert an MB-FITS file to a FITS file with the same format as for
MAMBO-ABBA data. The aim of this procedure is to be able to compare the results of a data
reduction performed with BoAwith those obtained with existing packages (e.g. NIC, MOPSI). Note:
This procedure has not been extensively tested recently...

6.3.2 Saving a map

Once a mapping observation has been read in and processed with BoA, the user can store the results,
i.e. a map in sky coordinates, in FITS file with standard 2D FITS images, including header with World
Coordinate System (WCS) infromations. This is done with the following command:

boa> data.writeFits() # default file name: boaMap.fits
boa> data.writeFits(’LABOCA_1234.fits’) # give a file name

67

6.3. DATA OUTPUT 68

The resulting FITS file will contain three images, displaying the Intensity, the Rms, and the Weights
of the current map. The content of each image is identified by the FITS keyword EXTNAME.

68

7. DEVELOPMENT

7.1 Basic programming rules

7.2 Adding classes

7.3 Adding methods

7.4 Adding Fortran90 code

FB040510

General

We are using Fortran 90/95 subroutines, wrapped to be called from python using the f2py package.
This is because f90 code executes much faster than python scripts. There are some subtelties to pay
attention to when wrapping fortran code, else you will add large overheads from the py-f90 interface,
as arrays are copied and reindexed. For an introduction to F90/95 (only minor differences between
the two), I recommend the compact and rather comprehensive (and free!) “Fortran 90 course notes”1

by AC Marshall from the University of Liverpool. It contains all you probably need to know. I wrote
a simple fortran method in BoA/fortran/BoaTest1.f90 to illustrate some basic features and give you a
chance to test the wrapper without BoA. Look at its header for details. For an online F90/95 language
reference2 the best I found is at the NCSA resources page, describing IBM’s XL Fortran for AIX 8.1
– which is close to the Intel compiler.

F90 in BoA

For BoA our general idea is to have one f90.so extension module, which includes all the f90 methods
(called subroutines and functions in fortran). This is necessitated by that the f90.data module, which
contains much of a scans data, is connected (through an “use data”) to the other f90 program modules,
and therefore they all need to be linked together.

The f90 methods may be split into different modules (classes) for convenience. We now have the first
operational modules BoaF1.f90, BoaChannelAnalyser.f90, BoaBaseLine.f90, and the data module
BoaData.f90. Each module may include any number of subroutines or functions. The data module
BoaData.f90 is like a common block that contains all the data which does not change during data
reduction. All data which does change is passed to the fortran subroutines as call arguments.

1
http://math.nist.gov/W̃Mitchell/f90course/CourseNotes.pdf

2
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/share/man/info/en_US/xlf/html/lr02.HTM#CONTENT

69

7.4. ADDING FORTRAN90 CODE 70

The BoaData.f90 (f90.data from python) module is filled in BoaDataEntity.FillF90. It must be refilled
if you change data object, else the fortran methods will work on a different scan. This re-filling must
be implemented still. Currently the f90.data is only filled upon read of a new data file.

The CVS directory BoA/fortran contains the fortran source code. You will need to wrap/compile the
BoA modules on your local system (see below), since it links to local libraries that have no standard
address. This will create the extension module f90.so which you import to BoA. From the CVS
directory BoA start BoA, then

>>> from fortran import f90

This is how to import any module from a subdirectory, which for this needs to include an empty file
__init__.py

The python script fortran/ftest.py contains a series of calls to the fortran subroutines. To run it:

>>> read() # read in some scan
>>> op() # open plot device

[enter]
>>> execfile(’ftest.py’) # start the script

which is followed with lots of output. To illustrate the use of new python methods that use fortran,
you find BoA/TestFB.py, which you run like ftest.py. It goes through a number of data reduction steps
and plots the data.

Wrapping F90 code with f2py

To wrap the f90 modules to produce f90.so:

ifc -c -w svd.f90
f2py -c -m f90 BoaData.f90 BoaF1.f90 BoaChannelAnalyser.f90 BoaBaseLine.f90 svd.o

or on some installations alternatively:
f2py -c --fcompiler=intel -m f90 BoaData.f90 BoaF1.f90 BoaChannelAnalyser.f90 BoaBaseLine.f90 svd.o

The first command recompiles the svd.o. On the f2py line there are some diagnostic options you may
add if you debug your code:

-DF2PY_REPORT_ATEXIT : gives time statistics upon exit from python.
-DF2PY_REPORT_ON_ARRAY_COPY=1000 : reports when the f2py interface copies an array.
-DNUMARRAY : must be used for numarray support. Default is Numeric.

If the wrapping fails, one of the following may be wrong:

1. You have not initiated the ifc compiler properly. In your shell initialization file (e.g. .cshrc for tcsh)
you need

if (-e /opt/intel/compiler60/ia32/bin/ifcvars.sh) then
source /opt/intel/compiler60/ia32/bin/ifcvars.csh

endif

70

7.4. ADDING FORTRAN90 CODE 71

or something equivalent.

2. Your python path does not include the intel fortran compiler:

setenv PYTHONPATH ".:/opt/intel/compiler60/ia32/lib/:
/usr/local/lib/python2.3:
/usr/local/lib/python2.3/site-packages:
/home/bertoldi/bin:
/opt:
/usr/lib"

3. You use an old version of f2py.

<fortran> f2py -version
2.39.235_1644

Once you have successfully imported f90 in BoA, you can inquire about the use of a given method by
typing

print f90.f1.NAME.__doc__

Fortran attributes are called f90.data.name_of_attribute. To inquire which ones are available:

boa> print f90.data.__doc__
el - ’f’-array(218)
track_el - ’f’-array(218)
ffcf_gain - ’f’-array(120)
subscan_time - ’f’-array(4)
az_p - ’f’-array(109,3)
lst - ’f’-array(218)
lon_p - ’f’-array(109,3)
track_az - ’f’-array(218)
lat - ’f’-array(218)
az - ’f’-array(218)
lat_p - ’f’-array(109,3)
lst_p - ’f’-array(109,3)
array_gain - ’f’-array(120)
lon - ’f’-array(218)
ffcf_cn - ’f’-array(120)
ut_p - ’f’-array(109,3)
nodding_sta - ’i’-array(218)
subscan_index - ’i’-array(4)
subscan_num - ’i’-array(4)
weights - ’f’-array(0), not allocated
el_p - ’f’-array(109,3)
ut - ’f’-array(218)
wobbler_pos - ’f’-array(218)

71

7.4. ADDING FORTRAN90 CODE 72

They are filled in in BoaBusiness.py: BoaB.FillF90

Use f90 methods in BoA

To call a fortran method, here an example:

compressed_array,nmax = f90.f1.compress(array,flag_array,0)

Two objects are returned as a tuple, an array and an integer. They both are not in the call argument
list, they are hidden to python, but are listed in the f90 code call argument list – have a look at the
source code.

Limitations

This particular example illustrates one of the limitations of wrapping f90 code: you cannot return an
array with a length that is determined upon execution. The wrapper needs to specify the size of an
array somehow. It does not have to be fixed, but specified through the size of an input attribute at least.
In this example we try to return an array that is a compression of the input array, determined by the
condition that the corresponding flag is 0. The trick to still do this here is to return a comressed_array
with the same size as array, plus an integer telling the size of the compressed array, so that the final
answer is compressed_array[0:nmax].

Fortran vs. C-contiguous

If a Numeric array is proper-contiguous and has a proper type then it is directly passed to the wrapped
Fortran function. Otherwise, an element-wise copy of an input array is made and the copy, being
proper-contiguous and with proper type, is used as an array argument. There are two types of proper-
contiguous Numeric arrays: Fortran-contiguous arrays when data is stored column-wise, i.e. indexing
of data as stored in memory starts from the lowest dimension; C-contiguous when data is stored
row-wise, i.e. indexing of data as stored in memory starts from the highest dimension. For one-
dimensional arrays these notions coincide. To transform input arrays to column major storage order
before passing them to Fortran routines, one may use the function as_column_major_storage(<array>)
that is provided by all F2PY generated extension modules, such as the BoA f90. If you call a fortran
method repeatedly with the same input array, you should convert the array first to avoid conversion
by the wrapper interface on each call – which could dominate the execution time here. If you add the
option -DF2PY_REPORT_ON_ARRAY_COPY=1000 when wrapping, you will be informed on each
copy that the wrapper interface performs. The option -DF2PY_REPORT_ATEXIT gives an execution
time summary upon exit that splits up the time used in fortran and in the interface. If the interface
time is large or comparable to the fortran execution time, your code is not efficient because it copies
arrays too often. Look at examples in BoaBaseLine.py, e.g.:

Data = f90.as_column_major_storage(self.Data.Data_Red_p)
Flag = f90.as_column_major_storage(self.Data.Data_Flag_p)
...
for i_ch in ch_range: # loop over channels and phases

for i_ph in ph_range:
Data = f90.baseline.addpoly(Data,Poly,Mean,Rms,i_ph,i_ch)

The input arrays are copied once into fortran-contiguous arrays before the loop, so in the loop there is
no overhead from copying. Note also the general scheme of calling a fortran method here: Data is in-
and output argument.

72

7.5. INTERFACING 73

7.5 Interfacing

7.5.1 ScientificPython-2.4.5

ScientificPython is a collection of Python modules that are useful for scientific computing. Almost all
modules make extensive use of Numerical Python (NumPy,Numeric), which must be installed prior
to Scientific Python. Scientific constist of about one dozen modules, which contain methods written
in Python that may come handy, but may be slow. The following lists a number of them.

stat() statistics() command calculates the statistics for all the channels in the range. Using plotmean()
plotrms() we can plot mean and RMS values of each channels. The examples are as shows below:

Figure 7.5.1: Plotting the Signal for channels in the range.

You need to import Numeric for Scientific. You can access the methods by importing the class or all
methods:

>>> from Numeric import *
>>> import Scientific.Statistics
>>> Scientific.Statistics.median([1,2,3,5,6])
3.0

or alternatively

73

7.5. INTERFACING 74

Figure 7.5.2: Plotting the Mean values of signal.

>>> from Scientific.Statistics import *
>>> median([1,2,3,5,6])
3.0

Available method in class Scientific.Statistics:

moment(data, order, about=None, theoretical=1)
mean(data)
weightedMean(data, sigma)
variance(data)
standardDeviation(data)
median(data)
mode(data)
normalizedMoment(data, order)
skewness(data)
kurtosis(data)
correlation(data1, data2)

There are also two classes for histograms:

Histogram

74

7.5. INTERFACING 75

Figure 7.5.3: Plotting the RMS values of signal.

WeightedHistogram(Histogram)

The following explains only those Scientific methods which are useful for Boa. Consult the scripts or
the (very sparse) documentation for more info.

Scientific.Statistics.median

Description: Computes the median of a 1-d array.

Example:

>>> median([1,2,3,5,6])
3.0

Scientific.Statistics.mean

Description: Returns the mean (average value) of a 1-d array.

Example:

75

7.5. INTERFACING 76

>>> mean([1,2,3,5,6])
3.3999999999999999

Scientific.Statistics.correlation

Description: Computes the correlation coefficient between two 1-dim arrays a and b according to

cab =
〈(a− ā)(b− b̄)〉

〈(a− ā)2〉1/2〈(b− b̄)2〉1/2
(7.5.1)

Example:

>>> correlation([1,2,3,4,5],[1,2,3,4,5])
1.0
>>> correlation([1,2,3,4,5],[1,2,3,5,5])
0.96476382123773219
>>> correlation([1,2,3,4,5],[5,4,3,2,1])
-1.0

Scientific.Functions.LeastSquares

Description: General non-linear least-squares fit using the Levenberg-Marquardt algorithm and au-
tomatic derivatives. The parameter model specifies the function to be fitted. It will be called with two
parameters: the first is a tuple containing all fit parameters, and the second is the first element of a
data point (see below). The return value must be a number. Since automatic differentiation is used
to obtain the derivatives with respect to the parameters, the function may only use the mathematical
functions known to the module FirstDerivatives. The parameter parameter is a tuple of initial values
for the fit parameters. The parameter data is a list of data points to which the model is to be fitted.
Each data point is a tuple of length two or three. Its first element specifies the independent variables
of the model. It is passed to the model function as its first parameter, but not used in any other way.
The second element of each data point tuple is the number that the return value of the model function
is supposed to match as well as possible. The third element (which defaults to 1.) is the statistical
variance of the data point, i.e. the inverse of its statistical weight in the fitting procedure. The function
returns a list containing the optimal parameter values and the chi-squared value describing the quality
of the fit.

Example:

>>> from Numeric import exp
>>> def f(param, t):
... return param[0]*exp(-param[1]/t)
...
>>> data = [(100, 4.999e-8),(200, 5.307e+2),
(300, 1.289e+6),(400, 6.559e+7)]

76

7.5. INTERFACING 77

>>> print leastSquaresFit(f, (1e13,4700), data)
([8641551709749.7666, 4715.4677901570467], 1080.2526437958597)

77

	I User's Manual
	Introduction
	Philosophy and basic structure

	Installation
	Prerequisites
	Conflicts with other software
	Obtaining the installation script and packages
	Installation using the install.sh script
	Resuming an incomplete installation
	Installation FAQ
	Updating BoA

	BoACookbook
	Starting up BoA
	Getting started
	Ending a session
	Getting Help
	Example of making a map
	Example of solving a pointing
	Example of solving a focus
	Demonstration scripts

	BoAUser Manual
	About BoA
	BoA usage
	User methods for making maps
	User methods for pointing
	User methods for focus
	User methods for file reading
	User methods for controlling graphics display devices
	User methods for displaying data
	MB-Fits to FITS file conversion
	Miscellaneous methods
	Scripts
	Commands in alphabetical order
	Commands in functional order
	Abbreviations

	BoGLi: the BoAGraphic Library
	Introduction
	Command handling
	Device handling
	Plotting graphics
	Keywords

	II Reference Manual
	Data Organisation
	Data input: the MB-FITS format
	BoAData objects
	Data output

	Development
	Basic programming rules
	Adding classes
	Adding methods
	Adding Fortran90 code
	Interfacing

